The relative contribution of natural landscapes and human-mediated factors on the connectivity of a noxious invasive weed

Diego F. Alvarado-Serrano, Megan Van Etten, Shu Mei Chang, Regina S. Baucom

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Examining how the landscape may influence gene flow is at the forefront of understanding population differentiation and adaptation. Such understanding is crucial in light of ongoing environmental changes and the elevated risk of ecosystems alteration. In particular, knowledge of how humans may influence population structure is imperative to allow for informed decisions in management and conservation as well as to gain a better understanding of anthropogenic impacts on the interplay between gene flow, genetic drift, and selection. Here, we use genome-wide molecular markers to characterize the population genetic structure and connectivity of Ipomoea purpurea (Convolvulaceae), a noxious invasive weed. We, likewise, assess the interaction between natural and human-driven influences on genetic differentiation among populations. Our analyses find that human population density is an important predictor of pairwise population differentiation, suggesting that the agricultural and/or horticultural trade may be involved in maintaining some level of connectivity across distant agricultural fields. Climatic variation appears as an additional predictor of genetic connectivity in this species. We discuss the implications of these results and highlight future research needed to disentangle the mechanistic processes underlying population connectivity of weeds.

Original languageEnglish (US)
Pages (from-to)29-40
Number of pages12
JournalHeredity
Volume122
Issue number1
DOIs
StatePublished - Jan 1 2019

Fingerprint

Gene Flow
Population
Convolvulaceae
Ipomoea
Genetic Drift
Genetic Structures
Genetic Selection
Population Genetics
Population Density
Ecosystem
Genome

All Science Journal Classification (ASJC) codes

  • Genetics
  • Genetics(clinical)

Cite this

Alvarado-Serrano, Diego F. ; Van Etten, Megan ; Chang, Shu Mei ; Baucom, Regina S. / The relative contribution of natural landscapes and human-mediated factors on the connectivity of a noxious invasive weed. In: Heredity. 2019 ; Vol. 122, No. 1. pp. 29-40.
@article{4c853fbbd33349e7aeb1167ffa1106e8,
title = "The relative contribution of natural landscapes and human-mediated factors on the connectivity of a noxious invasive weed",
abstract = "Examining how the landscape may influence gene flow is at the forefront of understanding population differentiation and adaptation. Such understanding is crucial in light of ongoing environmental changes and the elevated risk of ecosystems alteration. In particular, knowledge of how humans may influence population structure is imperative to allow for informed decisions in management and conservation as well as to gain a better understanding of anthropogenic impacts on the interplay between gene flow, genetic drift, and selection. Here, we use genome-wide molecular markers to characterize the population genetic structure and connectivity of Ipomoea purpurea (Convolvulaceae), a noxious invasive weed. We, likewise, assess the interaction between natural and human-driven influences on genetic differentiation among populations. Our analyses find that human population density is an important predictor of pairwise population differentiation, suggesting that the agricultural and/or horticultural trade may be involved in maintaining some level of connectivity across distant agricultural fields. Climatic variation appears as an additional predictor of genetic connectivity in this species. We discuss the implications of these results and highlight future research needed to disentangle the mechanistic processes underlying population connectivity of weeds.",
author = "Alvarado-Serrano, {Diego F.} and {Van Etten}, Megan and Chang, {Shu Mei} and Baucom, {Regina S.}",
year = "2019",
month = "1",
day = "1",
doi = "10.1038/s41437-018-0106-x",
language = "English (US)",
volume = "122",
pages = "29--40",
journal = "Heredity",
issn = "0018-067X",
publisher = "Nature Publishing Group",
number = "1",

}

The relative contribution of natural landscapes and human-mediated factors on the connectivity of a noxious invasive weed. / Alvarado-Serrano, Diego F.; Van Etten, Megan; Chang, Shu Mei; Baucom, Regina S.

In: Heredity, Vol. 122, No. 1, 01.01.2019, p. 29-40.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The relative contribution of natural landscapes and human-mediated factors on the connectivity of a noxious invasive weed

AU - Alvarado-Serrano, Diego F.

AU - Van Etten, Megan

AU - Chang, Shu Mei

AU - Baucom, Regina S.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Examining how the landscape may influence gene flow is at the forefront of understanding population differentiation and adaptation. Such understanding is crucial in light of ongoing environmental changes and the elevated risk of ecosystems alteration. In particular, knowledge of how humans may influence population structure is imperative to allow for informed decisions in management and conservation as well as to gain a better understanding of anthropogenic impacts on the interplay between gene flow, genetic drift, and selection. Here, we use genome-wide molecular markers to characterize the population genetic structure and connectivity of Ipomoea purpurea (Convolvulaceae), a noxious invasive weed. We, likewise, assess the interaction between natural and human-driven influences on genetic differentiation among populations. Our analyses find that human population density is an important predictor of pairwise population differentiation, suggesting that the agricultural and/or horticultural trade may be involved in maintaining some level of connectivity across distant agricultural fields. Climatic variation appears as an additional predictor of genetic connectivity in this species. We discuss the implications of these results and highlight future research needed to disentangle the mechanistic processes underlying population connectivity of weeds.

AB - Examining how the landscape may influence gene flow is at the forefront of understanding population differentiation and adaptation. Such understanding is crucial in light of ongoing environmental changes and the elevated risk of ecosystems alteration. In particular, knowledge of how humans may influence population structure is imperative to allow for informed decisions in management and conservation as well as to gain a better understanding of anthropogenic impacts on the interplay between gene flow, genetic drift, and selection. Here, we use genome-wide molecular markers to characterize the population genetic structure and connectivity of Ipomoea purpurea (Convolvulaceae), a noxious invasive weed. We, likewise, assess the interaction between natural and human-driven influences on genetic differentiation among populations. Our analyses find that human population density is an important predictor of pairwise population differentiation, suggesting that the agricultural and/or horticultural trade may be involved in maintaining some level of connectivity across distant agricultural fields. Climatic variation appears as an additional predictor of genetic connectivity in this species. We discuss the implications of these results and highlight future research needed to disentangle the mechanistic processes underlying population connectivity of weeds.

UR - http://www.scopus.com/inward/record.url?scp=85049583036&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049583036&partnerID=8YFLogxK

U2 - 10.1038/s41437-018-0106-x

DO - 10.1038/s41437-018-0106-x

M3 - Article

C2 - 29967398

AN - SCOPUS:85049583036

VL - 122

SP - 29

EP - 40

JO - Heredity

JF - Heredity

SN - 0018-067X

IS - 1

ER -