The role of casein in supporting the operation of surface bound kinesin

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Microtubules and associated motor proteins such as kinesin are envisioned for applications such as bioseparation and molecular sorting to powering hybrid synthetic mechanical devices. One of the challenges in realizing such systems is retaining motor functionality on device surfaces. Kinesin motors adsorbed onto glass surfaces lose their functionality or ability to interact with microtubules if not adsorbed with other supporting proteins. Casein, a milk protein, is commonly used in microtubule motility assays to preserve kinesin functionality. However, the mechanism responsible for this preservation of motor function is unknown. To study casein and kinesin interaction, a series of microtubule motility assays were performed where whole milk casein, or its αs1 and αs2, β or κ subunits, were introduced or omitted at various steps of the motility assay. In addition, a series of epifluorescence and total internal reflection microscopy (TIRF) experiments were conducted where fluorescently labeled casein was introduced at various steps of the motility assay to assess casein-casein and casein-glass binding dynamics. From these experiments it is concluded that casein forms a bi-layer which supports the operation of kinesin. The first tightly bound layer of casein mainly performs the function of anchoring the kinesin while the second more loosely bound layer of casein positions the head domain of the kinesin to more optimally interact with microtubules. Studies on individual casein subunits indicate that β casein was most effective in supporting kinesin functionality while κ casein was found to be least effective.

Original languageEnglish (US)
Article number14
JournalJournal of Biological Engineering
Volume2
DOIs
StatePublished - Oct 20 2008

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Biomedical Engineering
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'The role of casein in supporting the operation of surface bound kinesin'. Together they form a unique fingerprint.

Cite this