The science and technologies for fusion energy with lasers and direct-drive targets

J. D. Sethian, D. G. Colombant, J. L. Giuliani, R. H. Lehmberg, M. C. Myers, S. P. Obenschain, A. J. Schmitt, J. Weaver, M. F. Wolford, F. Hegeler, M. Friedman, A. E. Robson, A. Bayramian, J. Caird, C. Ebbers, J. Latkowski, W. Hogan, W. R.Meier, L. L. J.Perkins, K. SchaffersS. AbdelKahlik, K. Schoonover, D. Sadowski, K. Boehm, L. Carlson, J. Pulsifer, F. Najmabadi, A. R. Raffray, M. S. Tillack, G. Kulcinski, J. P. Blanchard, T. Heltemes, A. Ibrahim, E. Marriott, G. Moses, R. Radell, M. Sawan, J. Santarius, G. Sviatoslavsky, S. S. Zenobia, N. M. Ghoniem, S. Sharafat, J. El-Awady, Q. Hu, C. Duty, K. Leonard, G. Romanoski, L. L. Snead, S. J. Zinkle, C. Gentile, W. Parsells, C. C. Prinksi, T. Kozub, T. Dodson, D. V. Rose, T. Renk, C. Olson, N. Alexander, A. Bozek, G. Flint, D. T. Goodin, J. Hund, R. Paguio, R. W. Petzoldt, D. G. Schroen, J. Sheliak, T. Bernat, D. Bittner, J. Karnes, N. Petta, J. Streit, D. Geller, J. K. Hoffer, M. W. McGeoch, S. C. Glidden, H. Sanders, D. Weidenheimer, D. Morton, I. D. Smith, M. Bobecia, D. Harding, Thomas Martin Lehecka, S. B. Gilliam, S. M. Gidcumb, D. Forsythe, N. R. Parikh, S. O'Dell, M. Gorensek

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

We are carrying out a multidisciplinary multiinstitutional program to develop the scientific and technical basis for inertial fusion energy (IFE) based on laser drivers and directdrive targets. The key components are developed as an integrated system, linking the science, technology, and final application of a 1000-MWe pure-fusion power plant. The science and technologies developed here are flexible enough to be applied to other size systems. The scientific justification for this work is a family of target designs (simulations) that show that direct drive has the potential to provide the high gains needed for a pure-fusion power plant. Two competing lasers are under development: the diode-pumped solid-state laser (DPPSL) and the electron-beam-pumped krypton fluoride (KrF) gas laser. This paper will present the current state of the art in the target designs and lasers, as well as the other IFE technologies required for energy, including final optics (grazing incidence and dielectrics), chambers, and target fabrication, injection, and tracking technologies. All of these are applicable to both laser systems and to other laser IFE-based concepts. However, in some of the higher performance target designs, the DPPSL will require more energy to reach the same yield as with the KrF laser.

Original languageEnglish (US)
Article number5382598
Pages (from-to)690-703
Number of pages14
JournalIEEE Transactions on Plasma Science
Volume38
Issue number4 PART 2
DOIs
StatePublished - Apr 1 2010

Fingerprint

fusion
krypton fluoride lasers
lasers
power plants
solid state lasers
diodes
energy
energy technology
gas lasers
high gain
grazing incidence
chambers
optics
electron beams
injection
fabrication
simulation

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Condensed Matter Physics

Cite this

Sethian, J. D., Colombant, D. G., Giuliani, J. L., Lehmberg, R. H., Myers, M. C., Obenschain, S. P., ... Gorensek, M. (2010). The science and technologies for fusion energy with lasers and direct-drive targets. IEEE Transactions on Plasma Science, 38(4 PART 2), 690-703. [5382598]. https://doi.org/10.1109/TPS.2009.2037629
Sethian, J. D. ; Colombant, D. G. ; Giuliani, J. L. ; Lehmberg, R. H. ; Myers, M. C. ; Obenschain, S. P. ; Schmitt, A. J. ; Weaver, J. ; Wolford, M. F. ; Hegeler, F. ; Friedman, M. ; Robson, A. E. ; Bayramian, A. ; Caird, J. ; Ebbers, C. ; Latkowski, J. ; Hogan, W. ; R.Meier, W. ; J.Perkins, L. L. ; Schaffers, K. ; AbdelKahlik, S. ; Schoonover, K. ; Sadowski, D. ; Boehm, K. ; Carlson, L. ; Pulsifer, J. ; Najmabadi, F. ; Raffray, A. R. ; Tillack, M. S. ; Kulcinski, G. ; Blanchard, J. P. ; Heltemes, T. ; Ibrahim, A. ; Marriott, E. ; Moses, G. ; Radell, R. ; Sawan, M. ; Santarius, J. ; Sviatoslavsky, G. ; Zenobia, S. S. ; Ghoniem, N. M. ; Sharafat, S. ; El-Awady, J. ; Hu, Q. ; Duty, C. ; Leonard, K. ; Romanoski, G. ; Snead, L. L. ; Zinkle, S. J. ; Gentile, C. ; Parsells, W. ; Prinksi, C. C. ; Kozub, T. ; Dodson, T. ; Rose, D. V. ; Renk, T. ; Olson, C. ; Alexander, N. ; Bozek, A. ; Flint, G. ; Goodin, D. T. ; Hund, J. ; Paguio, R. ; Petzoldt, R. W. ; Schroen, D. G. ; Sheliak, J. ; Bernat, T. ; Bittner, D. ; Karnes, J. ; Petta, N. ; Streit, J. ; Geller, D. ; Hoffer, J. K. ; McGeoch, M. W. ; Glidden, S. C. ; Sanders, H. ; Weidenheimer, D. ; Morton, D. ; Smith, I. D. ; Bobecia, M. ; Harding, D. ; Lehecka, Thomas Martin ; Gilliam, S. B. ; Gidcumb, S. M. ; Forsythe, D. ; Parikh, N. R. ; O'Dell, S. ; Gorensek, M. / The science and technologies for fusion energy with lasers and direct-drive targets. In: IEEE Transactions on Plasma Science. 2010 ; Vol. 38, No. 4 PART 2. pp. 690-703.
@article{3e9e2f3269984ee5bf9b7237137e4cd3,
title = "The science and technologies for fusion energy with lasers and direct-drive targets",
abstract = "We are carrying out a multidisciplinary multiinstitutional program to develop the scientific and technical basis for inertial fusion energy (IFE) based on laser drivers and directdrive targets. The key components are developed as an integrated system, linking the science, technology, and final application of a 1000-MWe pure-fusion power plant. The science and technologies developed here are flexible enough to be applied to other size systems. The scientific justification for this work is a family of target designs (simulations) that show that direct drive has the potential to provide the high gains needed for a pure-fusion power plant. Two competing lasers are under development: the diode-pumped solid-state laser (DPPSL) and the electron-beam-pumped krypton fluoride (KrF) gas laser. This paper will present the current state of the art in the target designs and lasers, as well as the other IFE technologies required for energy, including final optics (grazing incidence and dielectrics), chambers, and target fabrication, injection, and tracking technologies. All of these are applicable to both laser systems and to other laser IFE-based concepts. However, in some of the higher performance target designs, the DPPSL will require more energy to reach the same yield as with the KrF laser.",
author = "Sethian, {J. D.} and Colombant, {D. G.} and Giuliani, {J. L.} and Lehmberg, {R. H.} and Myers, {M. C.} and Obenschain, {S. P.} and Schmitt, {A. J.} and J. Weaver and Wolford, {M. F.} and F. Hegeler and M. Friedman and Robson, {A. E.} and A. Bayramian and J. Caird and C. Ebbers and J. Latkowski and W. Hogan and W. R.Meier and J.Perkins, {L. L.} and K. Schaffers and S. AbdelKahlik and K. Schoonover and D. Sadowski and K. Boehm and L. Carlson and J. Pulsifer and F. Najmabadi and Raffray, {A. R.} and Tillack, {M. S.} and G. Kulcinski and Blanchard, {J. P.} and T. Heltemes and A. Ibrahim and E. Marriott and G. Moses and R. Radell and M. Sawan and J. Santarius and G. Sviatoslavsky and Zenobia, {S. S.} and Ghoniem, {N. M.} and S. Sharafat and J. El-Awady and Q. Hu and C. Duty and K. Leonard and G. Romanoski and Snead, {L. L.} and Zinkle, {S. J.} and C. Gentile and W. Parsells and Prinksi, {C. C.} and T. Kozub and T. Dodson and Rose, {D. V.} and T. Renk and C. Olson and N. Alexander and A. Bozek and G. Flint and Goodin, {D. T.} and J. Hund and R. Paguio and Petzoldt, {R. W.} and Schroen, {D. G.} and J. Sheliak and T. Bernat and D. Bittner and J. Karnes and N. Petta and J. Streit and D. Geller and Hoffer, {J. K.} and McGeoch, {M. W.} and Glidden, {S. C.} and H. Sanders and D. Weidenheimer and D. Morton and Smith, {I. D.} and M. Bobecia and D. Harding and Lehecka, {Thomas Martin} and Gilliam, {S. B.} and Gidcumb, {S. M.} and D. Forsythe and Parikh, {N. R.} and S. O'Dell and M. Gorensek",
year = "2010",
month = "4",
day = "1",
doi = "10.1109/TPS.2009.2037629",
language = "English (US)",
volume = "38",
pages = "690--703",
journal = "IEEE Transactions on Plasma Science",
issn = "0093-3813",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "4 PART 2",

}

Sethian, JD, Colombant, DG, Giuliani, JL, Lehmberg, RH, Myers, MC, Obenschain, SP, Schmitt, AJ, Weaver, J, Wolford, MF, Hegeler, F, Friedman, M, Robson, AE, Bayramian, A, Caird, J, Ebbers, C, Latkowski, J, Hogan, W, R.Meier, W, J.Perkins, LL, Schaffers, K, AbdelKahlik, S, Schoonover, K, Sadowski, D, Boehm, K, Carlson, L, Pulsifer, J, Najmabadi, F, Raffray, AR, Tillack, MS, Kulcinski, G, Blanchard, JP, Heltemes, T, Ibrahim, A, Marriott, E, Moses, G, Radell, R, Sawan, M, Santarius, J, Sviatoslavsky, G, Zenobia, SS, Ghoniem, NM, Sharafat, S, El-Awady, J, Hu, Q, Duty, C, Leonard, K, Romanoski, G, Snead, LL, Zinkle, SJ, Gentile, C, Parsells, W, Prinksi, CC, Kozub, T, Dodson, T, Rose, DV, Renk, T, Olson, C, Alexander, N, Bozek, A, Flint, G, Goodin, DT, Hund, J, Paguio, R, Petzoldt, RW, Schroen, DG, Sheliak, J, Bernat, T, Bittner, D, Karnes, J, Petta, N, Streit, J, Geller, D, Hoffer, JK, McGeoch, MW, Glidden, SC, Sanders, H, Weidenheimer, D, Morton, D, Smith, ID, Bobecia, M, Harding, D, Lehecka, TM, Gilliam, SB, Gidcumb, SM, Forsythe, D, Parikh, NR, O'Dell, S & Gorensek, M 2010, 'The science and technologies for fusion energy with lasers and direct-drive targets', IEEE Transactions on Plasma Science, vol. 38, no. 4 PART 2, 5382598, pp. 690-703. https://doi.org/10.1109/TPS.2009.2037629

The science and technologies for fusion energy with lasers and direct-drive targets. / Sethian, J. D.; Colombant, D. G.; Giuliani, J. L.; Lehmberg, R. H.; Myers, M. C.; Obenschain, S. P.; Schmitt, A. J.; Weaver, J.; Wolford, M. F.; Hegeler, F.; Friedman, M.; Robson, A. E.; Bayramian, A.; Caird, J.; Ebbers, C.; Latkowski, J.; Hogan, W.; R.Meier, W.; J.Perkins, L. L.; Schaffers, K.; AbdelKahlik, S.; Schoonover, K.; Sadowski, D.; Boehm, K.; Carlson, L.; Pulsifer, J.; Najmabadi, F.; Raffray, A. R.; Tillack, M. S.; Kulcinski, G.; Blanchard, J. P.; Heltemes, T.; Ibrahim, A.; Marriott, E.; Moses, G.; Radell, R.; Sawan, M.; Santarius, J.; Sviatoslavsky, G.; Zenobia, S. S.; Ghoniem, N. M.; Sharafat, S.; El-Awady, J.; Hu, Q.; Duty, C.; Leonard, K.; Romanoski, G.; Snead, L. L.; Zinkle, S. J.; Gentile, C.; Parsells, W.; Prinksi, C. C.; Kozub, T.; Dodson, T.; Rose, D. V.; Renk, T.; Olson, C.; Alexander, N.; Bozek, A.; Flint, G.; Goodin, D. T.; Hund, J.; Paguio, R.; Petzoldt, R. W.; Schroen, D. G.; Sheliak, J.; Bernat, T.; Bittner, D.; Karnes, J.; Petta, N.; Streit, J.; Geller, D.; Hoffer, J. K.; McGeoch, M. W.; Glidden, S. C.; Sanders, H.; Weidenheimer, D.; Morton, D.; Smith, I. D.; Bobecia, M.; Harding, D.; Lehecka, Thomas Martin; Gilliam, S. B.; Gidcumb, S. M.; Forsythe, D.; Parikh, N. R.; O'Dell, S.; Gorensek, M.

In: IEEE Transactions on Plasma Science, Vol. 38, No. 4 PART 2, 5382598, 01.04.2010, p. 690-703.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The science and technologies for fusion energy with lasers and direct-drive targets

AU - Sethian, J. D.

AU - Colombant, D. G.

AU - Giuliani, J. L.

AU - Lehmberg, R. H.

AU - Myers, M. C.

AU - Obenschain, S. P.

AU - Schmitt, A. J.

AU - Weaver, J.

AU - Wolford, M. F.

AU - Hegeler, F.

AU - Friedman, M.

AU - Robson, A. E.

AU - Bayramian, A.

AU - Caird, J.

AU - Ebbers, C.

AU - Latkowski, J.

AU - Hogan, W.

AU - R.Meier, W.

AU - J.Perkins, L. L.

AU - Schaffers, K.

AU - AbdelKahlik, S.

AU - Schoonover, K.

AU - Sadowski, D.

AU - Boehm, K.

AU - Carlson, L.

AU - Pulsifer, J.

AU - Najmabadi, F.

AU - Raffray, A. R.

AU - Tillack, M. S.

AU - Kulcinski, G.

AU - Blanchard, J. P.

AU - Heltemes, T.

AU - Ibrahim, A.

AU - Marriott, E.

AU - Moses, G.

AU - Radell, R.

AU - Sawan, M.

AU - Santarius, J.

AU - Sviatoslavsky, G.

AU - Zenobia, S. S.

AU - Ghoniem, N. M.

AU - Sharafat, S.

AU - El-Awady, J.

AU - Hu, Q.

AU - Duty, C.

AU - Leonard, K.

AU - Romanoski, G.

AU - Snead, L. L.

AU - Zinkle, S. J.

AU - Gentile, C.

AU - Parsells, W.

AU - Prinksi, C. C.

AU - Kozub, T.

AU - Dodson, T.

AU - Rose, D. V.

AU - Renk, T.

AU - Olson, C.

AU - Alexander, N.

AU - Bozek, A.

AU - Flint, G.

AU - Goodin, D. T.

AU - Hund, J.

AU - Paguio, R.

AU - Petzoldt, R. W.

AU - Schroen, D. G.

AU - Sheliak, J.

AU - Bernat, T.

AU - Bittner, D.

AU - Karnes, J.

AU - Petta, N.

AU - Streit, J.

AU - Geller, D.

AU - Hoffer, J. K.

AU - McGeoch, M. W.

AU - Glidden, S. C.

AU - Sanders, H.

AU - Weidenheimer, D.

AU - Morton, D.

AU - Smith, I. D.

AU - Bobecia, M.

AU - Harding, D.

AU - Lehecka, Thomas Martin

AU - Gilliam, S. B.

AU - Gidcumb, S. M.

AU - Forsythe, D.

AU - Parikh, N. R.

AU - O'Dell, S.

AU - Gorensek, M.

PY - 2010/4/1

Y1 - 2010/4/1

N2 - We are carrying out a multidisciplinary multiinstitutional program to develop the scientific and technical basis for inertial fusion energy (IFE) based on laser drivers and directdrive targets. The key components are developed as an integrated system, linking the science, technology, and final application of a 1000-MWe pure-fusion power plant. The science and technologies developed here are flexible enough to be applied to other size systems. The scientific justification for this work is a family of target designs (simulations) that show that direct drive has the potential to provide the high gains needed for a pure-fusion power plant. Two competing lasers are under development: the diode-pumped solid-state laser (DPPSL) and the electron-beam-pumped krypton fluoride (KrF) gas laser. This paper will present the current state of the art in the target designs and lasers, as well as the other IFE technologies required for energy, including final optics (grazing incidence and dielectrics), chambers, and target fabrication, injection, and tracking technologies. All of these are applicable to both laser systems and to other laser IFE-based concepts. However, in some of the higher performance target designs, the DPPSL will require more energy to reach the same yield as with the KrF laser.

AB - We are carrying out a multidisciplinary multiinstitutional program to develop the scientific and technical basis for inertial fusion energy (IFE) based on laser drivers and directdrive targets. The key components are developed as an integrated system, linking the science, technology, and final application of a 1000-MWe pure-fusion power plant. The science and technologies developed here are flexible enough to be applied to other size systems. The scientific justification for this work is a family of target designs (simulations) that show that direct drive has the potential to provide the high gains needed for a pure-fusion power plant. Two competing lasers are under development: the diode-pumped solid-state laser (DPPSL) and the electron-beam-pumped krypton fluoride (KrF) gas laser. This paper will present the current state of the art in the target designs and lasers, as well as the other IFE technologies required for energy, including final optics (grazing incidence and dielectrics), chambers, and target fabrication, injection, and tracking technologies. All of these are applicable to both laser systems and to other laser IFE-based concepts. However, in some of the higher performance target designs, the DPPSL will require more energy to reach the same yield as with the KrF laser.

UR - http://www.scopus.com/inward/record.url?scp=77951091613&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77951091613&partnerID=8YFLogxK

U2 - 10.1109/TPS.2009.2037629

DO - 10.1109/TPS.2009.2037629

M3 - Article

AN - SCOPUS:77951091613

VL - 38

SP - 690

EP - 703

JO - IEEE Transactions on Plasma Science

JF - IEEE Transactions on Plasma Science

SN - 0093-3813

IS - 4 PART 2

M1 - 5382598

ER -

Sethian JD, Colombant DG, Giuliani JL, Lehmberg RH, Myers MC, Obenschain SP et al. The science and technologies for fusion energy with lasers and direct-drive targets. IEEE Transactions on Plasma Science. 2010 Apr 1;38(4 PART 2):690-703. 5382598. https://doi.org/10.1109/TPS.2009.2037629