The SEA-CALIPSO volcano imaging experiment at Montserrat

Plans, campaigns at sea and on land, scientific results, and lessons learned

B. Voight, R. S.J. Sparks, E. Shalev, T. Minshull, M. Paulatto, C. Annen, C. Kenedi, J. Hammond, T. J. Henstock, L. Brown, E. Kiddle, P. Malin, G. Mattioli, Charles James Ammon, E. Arias-Dotson, A. Belousov, K. Byerly, L. Carothers, A. Clarke, S. Dean & 19 others L. Ellett, Derek Elsworth, D. Hidayat, R. A. Herd, M. Johnson, A. Lee, V. Miller, B. Murphy, C. Peirce, G. Ryan, S. Saldana, C. Snelson, R. Stewart, R. Syers, J. Taron, J. Trofimovs, C. Widiwijayanti, S. R. Young, W. Zamora

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Since 1995 the eruption of the andesitic Soufriére Hills Volcano (SHV), Montserrat, has been studied in substantial detail. As an important contribution to this effort, the Seismic Experiment with Airgunsource-Caribbean Andesitic Lava Island Precision Seismogeodetic Observatory (SEA-CALIPSO) experiment was devised to image the arc crust underlying Montserrat, and, if possible, the magma system at SHV using tomography and reflection seismology. Field operations were carried out in October-December 2007, with deployment of 238 seismometers on land supplementing seven volcano observatory stations, and with an array of 10 oceanbottom seismometers deployed offshore. The RRS James Cook on NERC cruise JC19 towed a tuned airgun array plus a digital 48- channel streamer on encircling and radial tracks for 77 h about Montserrat during December 2007, firing 4414 airgun shots and yielding about 47 Gb of data. The main objecctives of the experiment were achieved. Preliminary analyses of these data published in 2010 generated images of heterogeneous high-velocity bodies representing the cores of volcanoes and subjacent intrusions, and shallow areas of low velocity on the flanks of the island that reflect volcaniclastic deposits and hydrothermal alteration. The resolution of this preliminary work did not extend beyond 5 km depth. An improved three-dimensional (3D) seismic velocity model was then obtained by inversion of 181 665 first-arrival travel times from a more-complete sampling of the dataset, yielding clear images to 7.5 km depth of a low-velocity volume that was interpreted as the magma chamber which feeds the current eruption, with an estimated volume 13 km 3 . Coupled thermal and seismic modelling revealed properties of the partly crystallized magma. Seismic reflection analyses aimed at imaging structures under southern Montserrat had limited success, and suggest subhorizontal layering interpreted as sills at a depth of between 6 and 19 km. Seismic reflection profiles collected offshore reveal deep fans of volcaniclastic debris and fault offsets, leading to new tectonic interpretations. This chapter presents the project goals and planning concepts, describes in detail the campaigns at sea and on land, summarizes the major results, and identifies the key lessons learned.

Original languageEnglish (US)
Pages (from-to)253-289
Number of pages37
JournalGeological Society Memoir
Volume39
Issue number1
DOIs
StatePublished - Jan 1 2014

Fingerprint

lava
volcano
observatory
seismograph
seismic reflection
volcanic eruption
experiment
magma
volcaniclastic deposit
seismology
arrival time
seismic velocity
hydrothermal alteration
magma chamber
sill
travel time
tomography
crust
tectonics
plan

All Science Journal Classification (ASJC) codes

  • Geology

Cite this

Voight, B. ; Sparks, R. S.J. ; Shalev, E. ; Minshull, T. ; Paulatto, M. ; Annen, C. ; Kenedi, C. ; Hammond, J. ; Henstock, T. J. ; Brown, L. ; Kiddle, E. ; Malin, P. ; Mattioli, G. ; Ammon, Charles James ; Arias-Dotson, E. ; Belousov, A. ; Byerly, K. ; Carothers, L. ; Clarke, A. ; Dean, S. ; Ellett, L. ; Elsworth, Derek ; Hidayat, D. ; Herd, R. A. ; Johnson, M. ; Lee, A. ; Miller, V. ; Murphy, B. ; Peirce, C. ; Ryan, G. ; Saldana, S. ; Snelson, C. ; Stewart, R. ; Syers, R. ; Taron, J. ; Trofimovs, J. ; Widiwijayanti, C. ; Young, S. R. ; Zamora, W. / The SEA-CALIPSO volcano imaging experiment at Montserrat : Plans, campaigns at sea and on land, scientific results, and lessons learned. In: Geological Society Memoir. 2014 ; Vol. 39, No. 1. pp. 253-289.
@article{73a9d4cc57f34f278a2faac2f76480c6,
title = "The SEA-CALIPSO volcano imaging experiment at Montserrat: Plans, campaigns at sea and on land, scientific results, and lessons learned",
abstract = "Since 1995 the eruption of the andesitic Soufri{\'e}re Hills Volcano (SHV), Montserrat, has been studied in substantial detail. As an important contribution to this effort, the Seismic Experiment with Airgunsource-Caribbean Andesitic Lava Island Precision Seismogeodetic Observatory (SEA-CALIPSO) experiment was devised to image the arc crust underlying Montserrat, and, if possible, the magma system at SHV using tomography and reflection seismology. Field operations were carried out in October-December 2007, with deployment of 238 seismometers on land supplementing seven volcano observatory stations, and with an array of 10 oceanbottom seismometers deployed offshore. The RRS James Cook on NERC cruise JC19 towed a tuned airgun array plus a digital 48- channel streamer on encircling and radial tracks for 77 h about Montserrat during December 2007, firing 4414 airgun shots and yielding about 47 Gb of data. The main objecctives of the experiment were achieved. Preliminary analyses of these data published in 2010 generated images of heterogeneous high-velocity bodies representing the cores of volcanoes and subjacent intrusions, and shallow areas of low velocity on the flanks of the island that reflect volcaniclastic deposits and hydrothermal alteration. The resolution of this preliminary work did not extend beyond 5 km depth. An improved three-dimensional (3D) seismic velocity model was then obtained by inversion of 181 665 first-arrival travel times from a more-complete sampling of the dataset, yielding clear images to 7.5 km depth of a low-velocity volume that was interpreted as the magma chamber which feeds the current eruption, with an estimated volume 13 km 3 . Coupled thermal and seismic modelling revealed properties of the partly crystallized magma. Seismic reflection analyses aimed at imaging structures under southern Montserrat had limited success, and suggest subhorizontal layering interpreted as sills at a depth of between 6 and 19 km. Seismic reflection profiles collected offshore reveal deep fans of volcaniclastic debris and fault offsets, leading to new tectonic interpretations. This chapter presents the project goals and planning concepts, describes in detail the campaigns at sea and on land, summarizes the major results, and identifies the key lessons learned.",
author = "B. Voight and Sparks, {R. S.J.} and E. Shalev and T. Minshull and M. Paulatto and C. Annen and C. Kenedi and J. Hammond and Henstock, {T. J.} and L. Brown and E. Kiddle and P. Malin and G. Mattioli and Ammon, {Charles James} and E. Arias-Dotson and A. Belousov and K. Byerly and L. Carothers and A. Clarke and S. Dean and L. Ellett and Derek Elsworth and D. Hidayat and Herd, {R. A.} and M. Johnson and A. Lee and V. Miller and B. Murphy and C. Peirce and G. Ryan and S. Saldana and C. Snelson and R. Stewart and R. Syers and J. Taron and J. Trofimovs and C. Widiwijayanti and Young, {S. R.} and W. Zamora",
year = "2014",
month = "1",
day = "1",
doi = "10.1144/M39.15",
language = "English (US)",
volume = "39",
pages = "253--289",
journal = "Geological Society Memoir",
issn = "0435-4052",
publisher = "Geological Society of London",
number = "1",

}

Voight, B, Sparks, RSJ, Shalev, E, Minshull, T, Paulatto, M, Annen, C, Kenedi, C, Hammond, J, Henstock, TJ, Brown, L, Kiddle, E, Malin, P, Mattioli, G, Ammon, CJ, Arias-Dotson, E, Belousov, A, Byerly, K, Carothers, L, Clarke, A, Dean, S, Ellett, L, Elsworth, D, Hidayat, D, Herd, RA, Johnson, M, Lee, A, Miller, V, Murphy, B, Peirce, C, Ryan, G, Saldana, S, Snelson, C, Stewart, R, Syers, R, Taron, J, Trofimovs, J, Widiwijayanti, C, Young, SR & Zamora, W 2014, 'The SEA-CALIPSO volcano imaging experiment at Montserrat: Plans, campaigns at sea and on land, scientific results, and lessons learned', Geological Society Memoir, vol. 39, no. 1, pp. 253-289. https://doi.org/10.1144/M39.15

The SEA-CALIPSO volcano imaging experiment at Montserrat : Plans, campaigns at sea and on land, scientific results, and lessons learned. / Voight, B.; Sparks, R. S.J.; Shalev, E.; Minshull, T.; Paulatto, M.; Annen, C.; Kenedi, C.; Hammond, J.; Henstock, T. J.; Brown, L.; Kiddle, E.; Malin, P.; Mattioli, G.; Ammon, Charles James; Arias-Dotson, E.; Belousov, A.; Byerly, K.; Carothers, L.; Clarke, A.; Dean, S.; Ellett, L.; Elsworth, Derek; Hidayat, D.; Herd, R. A.; Johnson, M.; Lee, A.; Miller, V.; Murphy, B.; Peirce, C.; Ryan, G.; Saldana, S.; Snelson, C.; Stewart, R.; Syers, R.; Taron, J.; Trofimovs, J.; Widiwijayanti, C.; Young, S. R.; Zamora, W.

In: Geological Society Memoir, Vol. 39, No. 1, 01.01.2014, p. 253-289.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The SEA-CALIPSO volcano imaging experiment at Montserrat

T2 - Plans, campaigns at sea and on land, scientific results, and lessons learned

AU - Voight, B.

AU - Sparks, R. S.J.

AU - Shalev, E.

AU - Minshull, T.

AU - Paulatto, M.

AU - Annen, C.

AU - Kenedi, C.

AU - Hammond, J.

AU - Henstock, T. J.

AU - Brown, L.

AU - Kiddle, E.

AU - Malin, P.

AU - Mattioli, G.

AU - Ammon, Charles James

AU - Arias-Dotson, E.

AU - Belousov, A.

AU - Byerly, K.

AU - Carothers, L.

AU - Clarke, A.

AU - Dean, S.

AU - Ellett, L.

AU - Elsworth, Derek

AU - Hidayat, D.

AU - Herd, R. A.

AU - Johnson, M.

AU - Lee, A.

AU - Miller, V.

AU - Murphy, B.

AU - Peirce, C.

AU - Ryan, G.

AU - Saldana, S.

AU - Snelson, C.

AU - Stewart, R.

AU - Syers, R.

AU - Taron, J.

AU - Trofimovs, J.

AU - Widiwijayanti, C.

AU - Young, S. R.

AU - Zamora, W.

PY - 2014/1/1

Y1 - 2014/1/1

N2 - Since 1995 the eruption of the andesitic Soufriére Hills Volcano (SHV), Montserrat, has been studied in substantial detail. As an important contribution to this effort, the Seismic Experiment with Airgunsource-Caribbean Andesitic Lava Island Precision Seismogeodetic Observatory (SEA-CALIPSO) experiment was devised to image the arc crust underlying Montserrat, and, if possible, the magma system at SHV using tomography and reflection seismology. Field operations were carried out in October-December 2007, with deployment of 238 seismometers on land supplementing seven volcano observatory stations, and with an array of 10 oceanbottom seismometers deployed offshore. The RRS James Cook on NERC cruise JC19 towed a tuned airgun array plus a digital 48- channel streamer on encircling and radial tracks for 77 h about Montserrat during December 2007, firing 4414 airgun shots and yielding about 47 Gb of data. The main objecctives of the experiment were achieved. Preliminary analyses of these data published in 2010 generated images of heterogeneous high-velocity bodies representing the cores of volcanoes and subjacent intrusions, and shallow areas of low velocity on the flanks of the island that reflect volcaniclastic deposits and hydrothermal alteration. The resolution of this preliminary work did not extend beyond 5 km depth. An improved three-dimensional (3D) seismic velocity model was then obtained by inversion of 181 665 first-arrival travel times from a more-complete sampling of the dataset, yielding clear images to 7.5 km depth of a low-velocity volume that was interpreted as the magma chamber which feeds the current eruption, with an estimated volume 13 km 3 . Coupled thermal and seismic modelling revealed properties of the partly crystallized magma. Seismic reflection analyses aimed at imaging structures under southern Montserrat had limited success, and suggest subhorizontal layering interpreted as sills at a depth of between 6 and 19 km. Seismic reflection profiles collected offshore reveal deep fans of volcaniclastic debris and fault offsets, leading to new tectonic interpretations. This chapter presents the project goals and planning concepts, describes in detail the campaigns at sea and on land, summarizes the major results, and identifies the key lessons learned.

AB - Since 1995 the eruption of the andesitic Soufriére Hills Volcano (SHV), Montserrat, has been studied in substantial detail. As an important contribution to this effort, the Seismic Experiment with Airgunsource-Caribbean Andesitic Lava Island Precision Seismogeodetic Observatory (SEA-CALIPSO) experiment was devised to image the arc crust underlying Montserrat, and, if possible, the magma system at SHV using tomography and reflection seismology. Field operations were carried out in October-December 2007, with deployment of 238 seismometers on land supplementing seven volcano observatory stations, and with an array of 10 oceanbottom seismometers deployed offshore. The RRS James Cook on NERC cruise JC19 towed a tuned airgun array plus a digital 48- channel streamer on encircling and radial tracks for 77 h about Montserrat during December 2007, firing 4414 airgun shots and yielding about 47 Gb of data. The main objecctives of the experiment were achieved. Preliminary analyses of these data published in 2010 generated images of heterogeneous high-velocity bodies representing the cores of volcanoes and subjacent intrusions, and shallow areas of low velocity on the flanks of the island that reflect volcaniclastic deposits and hydrothermal alteration. The resolution of this preliminary work did not extend beyond 5 km depth. An improved three-dimensional (3D) seismic velocity model was then obtained by inversion of 181 665 first-arrival travel times from a more-complete sampling of the dataset, yielding clear images to 7.5 km depth of a low-velocity volume that was interpreted as the magma chamber which feeds the current eruption, with an estimated volume 13 km 3 . Coupled thermal and seismic modelling revealed properties of the partly crystallized magma. Seismic reflection analyses aimed at imaging structures under southern Montserrat had limited success, and suggest subhorizontal layering interpreted as sills at a depth of between 6 and 19 km. Seismic reflection profiles collected offshore reveal deep fans of volcaniclastic debris and fault offsets, leading to new tectonic interpretations. This chapter presents the project goals and planning concepts, describes in detail the campaigns at sea and on land, summarizes the major results, and identifies the key lessons learned.

UR - http://www.scopus.com/inward/record.url?scp=84986205310&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84986205310&partnerID=8YFLogxK

U2 - 10.1144/M39.15

DO - 10.1144/M39.15

M3 - Article

VL - 39

SP - 253

EP - 289

JO - Geological Society Memoir

JF - Geological Society Memoir

SN - 0435-4052

IS - 1

ER -