The T4 phage UvsW protein contains both DNA unwinding and strand annealing activities

Scott W. Nelson, Stephen J. Benkovic

Research output: Contribution to journalArticle

24 Scopus citations

Abstract

UvsW protein belongs to the SF2 helicase family and is one of three helicases found in T4 phage. UvsW governs the transition from origin-dependent to origin-independent replication through the dissociation of R-loops located at the T4 origins of replication. Additionally, in vivo evidence indicates that UvsW plays a role in recombination-dependent replication and/or DNA repair. Here, the biochemical properties of UvsW helicase are described. UvsW is a 3′ to 5′ helicase that unwinds a wide variety of substrates, including those resembling stalled replication forks and recombination intermediates. UvsW also contains a potent single-strand DNA annealing activity that is enhanced by ATP hydrolysis but does not require it. The annealing activity is inhibited by the non-hydrolysable ATP analog (adenosine 5′-O-(thiotriphosphate)), T4 single-stranded DNA-binding protein (gp32), or a small 8.8-kDa polypeptide (UvsW.1). Fluorescence resonance energy transfer experiments indicate that UvsW and UvsW.1 form a complex, suggesting that the UvsW helicase may exist as a heterodimer in vivo. Fusion of UvsW and UvsW.1 results in a 68-kDa protein having nearly identical properties as the UvsW-UvsW.1 complex, indicating that the binding locus of UvsW.1 is close to the C terminus of UvsW. The biochemical properties of UvsW are similar to the RecQ protein family and suggest that the annealing activity of these helicases may also be modulated by protein-protein interactions. The dual activities of UvsW are well suited for the DNA repair pathways described for leading strand lesion bypass and synthesis-dependent strand annealing.

Original languageEnglish (US)
Pages (from-to)407-416
Number of pages10
JournalJournal of Biological Chemistry
Volume282
Issue number1
DOIs
StatePublished - Jan 5 2007

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this