Theoretical characterization of a tridentate photochromic Pt(II) complex using density functional theory methods

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Density functional theory methods have been used to characterize a tridentate photochromic Pt(II) complex [Pt(AAA)Cl], its acetonitrile complex [Pt(AAA)Cl·CH3CN], and the transition state in the complexation reaction. B3LYP/6-31G* (effective core potential for Pt) optimized geometries of Pt(AAA)Cl and Pt(AAA)Cl·CH3CN are found to be in reasonably good agreement with most of the applicable parameters for the available experimental crystal structures of Pt(AAA)Cl and a Pt(AAA)Cl-triphenylphoshine complex, with the exception of one of the dihedral angles, the deviation of which is determined to be due to a steric cis versus trans effect. Vibrational frequencies are calculated for Pt(AAA)Cl and cis-Pt(AAA)Cl·CH3CN, and the predicted shift in the benzaldehyde carbonyl frequency is found to be in line with that observed experimentally. Singlet vertical excitation energies are calculated for Pt(AAA)Cl and cis-Pt(AAA)-Cl·CH3CN using time-dependent density-functional theory and are found to be in good agreement with the experimental transition energies, although for cis-Pt(AAA)CI-CH3CN, the calculations suggest a reassignment of the experimental S1 and S 2 transitions. Single point energies are calculated at the B3LYP/6-311 +G(2d,2p) level (effective core potential for Pt) and the calculations predict the complexation reaction (dark reaction) to be exothermic and, after a correction to the entropy, to be exoergic at 298 K and to proceed with a reasonable activation energy. Based on singlet and triplet vertical excitation energies, it is speculated that the photoreaction occurs via an intersystem crossing from S1 to T1 for cis-Pt(AAA)Cl·CH3CN followed by an adiabatic reaction along the T1 surface and then nonradiative intersystem crossing to the S0 state of Pt(AAA)Cl.

Original languageEnglish (US)
Pages (from-to)2198-2209
Number of pages12
JournalJournal of Chemical Theory and Computation
Volume3
Issue number6
DOIs
StatePublished - Nov 1 2007

Fingerprint

Excitation energy
Complexation
Density functional theory
density functional theory
Core levels
Vibrational spectra
Dihedral angle
Acetonitrile
Entropy
Activation energy
Crystal structure
Geometry
energy
excitation
acetonitrile
dihedral angle
entropy
activation energy
deviation
crystal structure

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Physical and Theoretical Chemistry

Cite this

@article{d0a41ba802234a4988ac93c1f978a164,
title = "Theoretical characterization of a tridentate photochromic Pt(II) complex using density functional theory methods",
abstract = "Density functional theory methods have been used to characterize a tridentate photochromic Pt(II) complex [Pt(AAA)Cl], its acetonitrile complex [Pt(AAA)Cl·CH3CN], and the transition state in the complexation reaction. B3LYP/6-31G* (effective core potential for Pt) optimized geometries of Pt(AAA)Cl and Pt(AAA)Cl·CH3CN are found to be in reasonably good agreement with most of the applicable parameters for the available experimental crystal structures of Pt(AAA)Cl and a Pt(AAA)Cl-triphenylphoshine complex, with the exception of one of the dihedral angles, the deviation of which is determined to be due to a steric cis versus trans effect. Vibrational frequencies are calculated for Pt(AAA)Cl and cis-Pt(AAA)Cl·CH3CN, and the predicted shift in the benzaldehyde carbonyl frequency is found to be in line with that observed experimentally. Singlet vertical excitation energies are calculated for Pt(AAA)Cl and cis-Pt(AAA)-Cl·CH3CN using time-dependent density-functional theory and are found to be in good agreement with the experimental transition energies, although for cis-Pt(AAA)CI-CH3CN, the calculations suggest a reassignment of the experimental S1 and S 2 transitions. Single point energies are calculated at the B3LYP/6-311 +G(2d,2p) level (effective core potential for Pt) and the calculations predict the complexation reaction (dark reaction) to be exothermic and, after a correction to the entropy, to be exoergic at 298 K and to proceed with a reasonable activation energy. Based on singlet and triplet vertical excitation energies, it is speculated that the photoreaction occurs via an intersystem crossing from S1 to T1 for cis-Pt(AAA)Cl·CH3CN followed by an adiabatic reaction along the T1 surface and then nonradiative intersystem crossing to the S0 state of Pt(AAA)Cl.",
author = "Jay Amicangelo",
year = "2007",
month = "11",
day = "1",
doi = "10.1021/ct700158g",
language = "English (US)",
volume = "3",
pages = "2198--2209",
journal = "Journal of Chemical Theory and Computation",
issn = "1549-9618",
publisher = "American Chemical Society",
number = "6",

}

TY - JOUR

T1 - Theoretical characterization of a tridentate photochromic Pt(II) complex using density functional theory methods

AU - Amicangelo, Jay

PY - 2007/11/1

Y1 - 2007/11/1

N2 - Density functional theory methods have been used to characterize a tridentate photochromic Pt(II) complex [Pt(AAA)Cl], its acetonitrile complex [Pt(AAA)Cl·CH3CN], and the transition state in the complexation reaction. B3LYP/6-31G* (effective core potential for Pt) optimized geometries of Pt(AAA)Cl and Pt(AAA)Cl·CH3CN are found to be in reasonably good agreement with most of the applicable parameters for the available experimental crystal structures of Pt(AAA)Cl and a Pt(AAA)Cl-triphenylphoshine complex, with the exception of one of the dihedral angles, the deviation of which is determined to be due to a steric cis versus trans effect. Vibrational frequencies are calculated for Pt(AAA)Cl and cis-Pt(AAA)Cl·CH3CN, and the predicted shift in the benzaldehyde carbonyl frequency is found to be in line with that observed experimentally. Singlet vertical excitation energies are calculated for Pt(AAA)Cl and cis-Pt(AAA)-Cl·CH3CN using time-dependent density-functional theory and are found to be in good agreement with the experimental transition energies, although for cis-Pt(AAA)CI-CH3CN, the calculations suggest a reassignment of the experimental S1 and S 2 transitions. Single point energies are calculated at the B3LYP/6-311 +G(2d,2p) level (effective core potential for Pt) and the calculations predict the complexation reaction (dark reaction) to be exothermic and, after a correction to the entropy, to be exoergic at 298 K and to proceed with a reasonable activation energy. Based on singlet and triplet vertical excitation energies, it is speculated that the photoreaction occurs via an intersystem crossing from S1 to T1 for cis-Pt(AAA)Cl·CH3CN followed by an adiabatic reaction along the T1 surface and then nonradiative intersystem crossing to the S0 state of Pt(AAA)Cl.

AB - Density functional theory methods have been used to characterize a tridentate photochromic Pt(II) complex [Pt(AAA)Cl], its acetonitrile complex [Pt(AAA)Cl·CH3CN], and the transition state in the complexation reaction. B3LYP/6-31G* (effective core potential for Pt) optimized geometries of Pt(AAA)Cl and Pt(AAA)Cl·CH3CN are found to be in reasonably good agreement with most of the applicable parameters for the available experimental crystal structures of Pt(AAA)Cl and a Pt(AAA)Cl-triphenylphoshine complex, with the exception of one of the dihedral angles, the deviation of which is determined to be due to a steric cis versus trans effect. Vibrational frequencies are calculated for Pt(AAA)Cl and cis-Pt(AAA)Cl·CH3CN, and the predicted shift in the benzaldehyde carbonyl frequency is found to be in line with that observed experimentally. Singlet vertical excitation energies are calculated for Pt(AAA)Cl and cis-Pt(AAA)-Cl·CH3CN using time-dependent density-functional theory and are found to be in good agreement with the experimental transition energies, although for cis-Pt(AAA)CI-CH3CN, the calculations suggest a reassignment of the experimental S1 and S 2 transitions. Single point energies are calculated at the B3LYP/6-311 +G(2d,2p) level (effective core potential for Pt) and the calculations predict the complexation reaction (dark reaction) to be exothermic and, after a correction to the entropy, to be exoergic at 298 K and to proceed with a reasonable activation energy. Based on singlet and triplet vertical excitation energies, it is speculated that the photoreaction occurs via an intersystem crossing from S1 to T1 for cis-Pt(AAA)Cl·CH3CN followed by an adiabatic reaction along the T1 surface and then nonradiative intersystem crossing to the S0 state of Pt(AAA)Cl.

UR - http://www.scopus.com/inward/record.url?scp=36648998940&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36648998940&partnerID=8YFLogxK

U2 - 10.1021/ct700158g

DO - 10.1021/ct700158g

M3 - Article

AN - SCOPUS:36648998940

VL - 3

SP - 2198

EP - 2209

JO - Journal of Chemical Theory and Computation

JF - Journal of Chemical Theory and Computation

SN - 1549-9618

IS - 6

ER -