Thermal analysis of an x-ray mask membrane in a plasma environment

M. F. Laudon, Karen Ann Thole, R. L. Engelstad, D. J. Resnick, K. D. Cummings, W. J. Dauksher

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Transient temperatures are measured on a mask membrane in an etching environment after turning off the plasma to determine various heat transfer characteristics of the mask. These characteristics include the incident heat flux, effective membrane emissivity, and heat transfer coefficient for a selected helium flow condition. These temperatures are compared to analytical and finite element calculations. Good agreement is found between calculated and measured temperature decays. Using these characteristics in the finite element models, the steady-state temperature distribution in the mask is computed for both the no helium and flowing helium cases. Again, good agreement between calculated and measured temperatures is found for both cases. Based on these results, minimal temperature rise and subsequently minimal gradients occur for the flowing helium case. These techniques can be used to optimize the membrane cooling process and predict a usable membrane area.

Original languageEnglish (US)
Pages (from-to)3050-3054
Number of pages5
JournalJournal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
Volume13
Issue number6
DOIs
StatePublished - Nov 1 1995

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Thermal analysis of an x-ray mask membrane in a plasma environment'. Together they form a unique fingerprint.

Cite this