Thermal architecture for the SPIDER flight cryostat

J. E. Gudmundsson, P. A.R. Ade, M. Amiri, S. J. Benton, R. Bihary, J. J. Bock, J. R. Bond, J. A. Bonetti, S. A. Bryan, B. Burger, H. C. Chiang, C. R. Contaldi, B. P. Crill, O. Doré, M. Farhang, J. Filippini, L. M. Fissel, N. N. Gandilo, S. R. Golwala, M. Halpern & 24 others Matthew Hasselfield, G. Hilton, W. Holmes, V. V. Hristov, K. D. Irwin, W. C. Jones, C. L. Kuo, C. J. MacTavish, P. V. Mason, T. E. Montroy, T. A. Morford, C. B. Netterfield, D. T. O'Dea, A. S. Rahlin, C. D. Reintsema, J. E. Ruhl, M. C. Runyan, M. A. Schenker, J. A. Shariff, J. D. Soler, A. Trangsrud, C. Tucker, R. S. Tucker, A. D. Turner

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle 3He adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.

Original languageEnglish (US)
Title of host publicationMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V
DOIs
StatePublished - Sep 7 2010
EventMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V - San Diego, CA, United States
Duration: Jun 29 2010Jul 2 2010

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume7741
ISSN (Print)0277-786X

Other

OtherMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V
CountryUnited States
CitySan Diego, CA
Period6/29/107/2/10

Fingerprint

Cryostats
cryostats
Cryogenics
cryogenics
Helium
Balloons
flight
multilayer insulation
helium
Balloon
Superfluid helium
balloon flight
closed cycles
Polarimeters
flexing
Refrigerators
refrigerators
qualifications
Heat radiation
thermal radiation

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this

Gudmundsson, J. E., Ade, P. A. R., Amiri, M., Benton, S. J., Bihary, R., Bock, J. J., ... Turner, A. D. (2010). Thermal architecture for the SPIDER flight cryostat. In Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V [77411M] (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 7741). https://doi.org/10.1117/12.857925
Gudmundsson, J. E. ; Ade, P. A.R. ; Amiri, M. ; Benton, S. J. ; Bihary, R. ; Bock, J. J. ; Bond, J. R. ; Bonetti, J. A. ; Bryan, S. A. ; Burger, B. ; Chiang, H. C. ; Contaldi, C. R. ; Crill, B. P. ; Doré, O. ; Farhang, M. ; Filippini, J. ; Fissel, L. M. ; Gandilo, N. N. ; Golwala, S. R. ; Halpern, M. ; Hasselfield, Matthew ; Hilton, G. ; Holmes, W. ; Hristov, V. V. ; Irwin, K. D. ; Jones, W. C. ; Kuo, C. L. ; MacTavish, C. J. ; Mason, P. V. ; Montroy, T. E. ; Morford, T. A. ; Netterfield, C. B. ; O'Dea, D. T. ; Rahlin, A. S. ; Reintsema, C. D. ; Ruhl, J. E. ; Runyan, M. C. ; Schenker, M. A. ; Shariff, J. A. ; Soler, J. D. ; Trangsrud, A. ; Tucker, C. ; Tucker, R. S. ; Turner, A. D. / Thermal architecture for the SPIDER flight cryostat. Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V. 2010. (Proceedings of SPIE - The International Society for Optical Engineering).
@inproceedings{0fdd4082977840bba1b59f823c627ad1,
title = "Thermal architecture for the SPIDER flight cryostat",
abstract = "We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8{\%} of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle 3He adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.",
author = "Gudmundsson, {J. E.} and Ade, {P. A.R.} and M. Amiri and Benton, {S. J.} and R. Bihary and Bock, {J. J.} and Bond, {J. R.} and Bonetti, {J. A.} and Bryan, {S. A.} and B. Burger and Chiang, {H. C.} and Contaldi, {C. R.} and Crill, {B. P.} and O. Dor{\'e} and M. Farhang and J. Filippini and Fissel, {L. M.} and Gandilo, {N. N.} and Golwala, {S. R.} and M. Halpern and Matthew Hasselfield and G. Hilton and W. Holmes and Hristov, {V. V.} and Irwin, {K. D.} and Jones, {W. C.} and Kuo, {C. L.} and MacTavish, {C. J.} and Mason, {P. V.} and Montroy, {T. E.} and Morford, {T. A.} and Netterfield, {C. B.} and O'Dea, {D. T.} and Rahlin, {A. S.} and Reintsema, {C. D.} and Ruhl, {J. E.} and Runyan, {M. C.} and Schenker, {M. A.} and Shariff, {J. A.} and Soler, {J. D.} and A. Trangsrud and C. Tucker and Tucker, {R. S.} and Turner, {A. D.}",
year = "2010",
month = "9",
day = "7",
doi = "10.1117/12.857925",
language = "English (US)",
isbn = "9780819482310",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
booktitle = "Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V",

}

Gudmundsson, JE, Ade, PAR, Amiri, M, Benton, SJ, Bihary, R, Bock, JJ, Bond, JR, Bonetti, JA, Bryan, SA, Burger, B, Chiang, HC, Contaldi, CR, Crill, BP, Doré, O, Farhang, M, Filippini, J, Fissel, LM, Gandilo, NN, Golwala, SR, Halpern, M, Hasselfield, M, Hilton, G, Holmes, W, Hristov, VV, Irwin, KD, Jones, WC, Kuo, CL, MacTavish, CJ, Mason, PV, Montroy, TE, Morford, TA, Netterfield, CB, O'Dea, DT, Rahlin, AS, Reintsema, CD, Ruhl, JE, Runyan, MC, Schenker, MA, Shariff, JA, Soler, JD, Trangsrud, A, Tucker, C, Tucker, RS & Turner, AD 2010, Thermal architecture for the SPIDER flight cryostat. in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V., 77411M, Proceedings of SPIE - The International Society for Optical Engineering, vol. 7741, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, San Diego, CA, United States, 6/29/10. https://doi.org/10.1117/12.857925

Thermal architecture for the SPIDER flight cryostat. / Gudmundsson, J. E.; Ade, P. A.R.; Amiri, M.; Benton, S. J.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bonetti, J. A.; Bryan, S. A.; Burger, B.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Doré, O.; Farhang, M.; Filippini, J.; Fissel, L. M.; Gandilo, N. N.; Golwala, S. R.; Halpern, M.; Hasselfield, Matthew; Hilton, G.; Holmes, W.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Montroy, T. E.; Morford, T. A.; Netterfield, C. B.; O'Dea, D. T.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Schenker, M. A.; Shariff, J. A.; Soler, J. D.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.

Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V. 2010. 77411M (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 7741).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - Thermal architecture for the SPIDER flight cryostat

AU - Gudmundsson, J. E.

AU - Ade, P. A.R.

AU - Amiri, M.

AU - Benton, S. J.

AU - Bihary, R.

AU - Bock, J. J.

AU - Bond, J. R.

AU - Bonetti, J. A.

AU - Bryan, S. A.

AU - Burger, B.

AU - Chiang, H. C.

AU - Contaldi, C. R.

AU - Crill, B. P.

AU - Doré, O.

AU - Farhang, M.

AU - Filippini, J.

AU - Fissel, L. M.

AU - Gandilo, N. N.

AU - Golwala, S. R.

AU - Halpern, M.

AU - Hasselfield, Matthew

AU - Hilton, G.

AU - Holmes, W.

AU - Hristov, V. V.

AU - Irwin, K. D.

AU - Jones, W. C.

AU - Kuo, C. L.

AU - MacTavish, C. J.

AU - Mason, P. V.

AU - Montroy, T. E.

AU - Morford, T. A.

AU - Netterfield, C. B.

AU - O'Dea, D. T.

AU - Rahlin, A. S.

AU - Reintsema, C. D.

AU - Ruhl, J. E.

AU - Runyan, M. C.

AU - Schenker, M. A.

AU - Shariff, J. A.

AU - Soler, J. D.

AU - Trangsrud, A.

AU - Tucker, C.

AU - Tucker, R. S.

AU - Turner, A. D.

PY - 2010/9/7

Y1 - 2010/9/7

N2 - We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle 3He adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.

AB - We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle 3He adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.

UR - http://www.scopus.com/inward/record.url?scp=77956218907&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77956218907&partnerID=8YFLogxK

U2 - 10.1117/12.857925

DO - 10.1117/12.857925

M3 - Conference contribution

SN - 9780819482310

T3 - Proceedings of SPIE - The International Society for Optical Engineering

BT - Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V

ER -

Gudmundsson JE, Ade PAR, Amiri M, Benton SJ, Bihary R, Bock JJ et al. Thermal architecture for the SPIDER flight cryostat. In Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V. 2010. 77411M. (Proceedings of SPIE - The International Society for Optical Engineering). https://doi.org/10.1117/12.857925