TY - JOUR
T1 - Thermal hydraulic model of the molten salt reactor experiment with the NEAMS system analysis module
AU - Leandro, Adrian M.
AU - Heidet, Florent
AU - Hu, Rui
AU - Brown, Nicholas R.
N1 - Funding Information:
This material is based upon work, in part, supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. This work is synergistic with, and complementary to, ongoing efforts in the MSR Campaign led by Dr. Lou Qualls at ORNL.
Funding Information:
The submitted manuscript has been co-created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2019/4
Y1 - 2019/4
N2 - System analysis codes have a long history of providing best-estimate and conservative safety analysis for both light water and advanced reactor technologies, including molten salt reactors. As interest continues to expand with advanced reactor concepts, system analysis codes will need revisions to accommodate the behavior of these technologies. Legacy system analysis codes will need to be updated to the latest numerical techniques to shorten execution time and increase the accuracy of results. One example of a modern system analysis code that already encompasses these characteristics is the System Analysis Module (SAM). One key objective of this paper was to review available information for system code modeling of the Molten Salt Reactor Experiment (MSRE) from sources in the open literature and collect the information from these open sources in one place for the first time. This supports the potential objective of developing an open specification for system code analysis for MSRE steady state and transients with and without reactor kinetics. Data from actual MSRE tests will serve as the basis for code-to-code comparison exercises, including the MSRE zero power physics tests, the fuel pump start-up and coast down tests, and the natural circulation transient. The objective is to produce a code-to-code benchmark with a standardized set of comparison problems, recognizing the limitations of the original data. To demonstrate an initial application of this objective and the usefulness of compiling this open data, two Molten Salt Reactor Experiment (MSRE)-related models were developed to evaluate SAM for liquid fueled molten salt reactors. One model was the SAM MSRE hydraulic mockup, which provided experimental data for pressure drop measurements. The second model was the complete MSRE primary loop. The MSRE primary loop model incorporated a fluoride salt fuel/coolant with heat transfer in both the core and heat exchanger. For both the hydraulic mockup and MSRE primary loop models, a holistic 1-D system description was built using open documentation, an open description that can be readily modified and applied for any system analysis code. SAM results for the pressure drop of the hydraulic mockup model were within 6% with measurements. Coolant temperatures for the primary loop model matched the expected axial change in temperature from historical calculations. Using alternative coolant properties obtained from the literature, corresponding to salts with different actinide contents, returned similar trends in core temperature profiles. A thermal hydraulic demonstration of a loss-of-flow transient showed the importance of coupling SAM thermal hydraulic analysis to neutronics. This coupling is essential for simulating MSR transients with system analysis codes.
AB - System analysis codes have a long history of providing best-estimate and conservative safety analysis for both light water and advanced reactor technologies, including molten salt reactors. As interest continues to expand with advanced reactor concepts, system analysis codes will need revisions to accommodate the behavior of these technologies. Legacy system analysis codes will need to be updated to the latest numerical techniques to shorten execution time and increase the accuracy of results. One example of a modern system analysis code that already encompasses these characteristics is the System Analysis Module (SAM). One key objective of this paper was to review available information for system code modeling of the Molten Salt Reactor Experiment (MSRE) from sources in the open literature and collect the information from these open sources in one place for the first time. This supports the potential objective of developing an open specification for system code analysis for MSRE steady state and transients with and without reactor kinetics. Data from actual MSRE tests will serve as the basis for code-to-code comparison exercises, including the MSRE zero power physics tests, the fuel pump start-up and coast down tests, and the natural circulation transient. The objective is to produce a code-to-code benchmark with a standardized set of comparison problems, recognizing the limitations of the original data. To demonstrate an initial application of this objective and the usefulness of compiling this open data, two Molten Salt Reactor Experiment (MSRE)-related models were developed to evaluate SAM for liquid fueled molten salt reactors. One model was the SAM MSRE hydraulic mockup, which provided experimental data for pressure drop measurements. The second model was the complete MSRE primary loop. The MSRE primary loop model incorporated a fluoride salt fuel/coolant with heat transfer in both the core and heat exchanger. For both the hydraulic mockup and MSRE primary loop models, a holistic 1-D system description was built using open documentation, an open description that can be readily modified and applied for any system analysis code. SAM results for the pressure drop of the hydraulic mockup model were within 6% with measurements. Coolant temperatures for the primary loop model matched the expected axial change in temperature from historical calculations. Using alternative coolant properties obtained from the literature, corresponding to salts with different actinide contents, returned similar trends in core temperature profiles. A thermal hydraulic demonstration of a loss-of-flow transient showed the importance of coupling SAM thermal hydraulic analysis to neutronics. This coupling is essential for simulating MSR transients with system analysis codes.
UR - http://www.scopus.com/inward/record.url?scp=85056568674&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056568674&partnerID=8YFLogxK
U2 - 10.1016/j.anucene.2018.10.060
DO - 10.1016/j.anucene.2018.10.060
M3 - Article
AN - SCOPUS:85056568674
VL - 126
SP - 59
EP - 67
JO - Annals of Nuclear Energy
JF - Annals of Nuclear Energy
SN - 0306-4549
ER -