Thermodynamic and mechanical properties of lanthanum-magnesium phases from density functional theory

J. Wróbel, L. G. Hector, W. Wolf, Shunli Shang, Zi-kui Liu, K. J. Kurzydłowski

Research output: Contribution to journalArticle

49 Scopus citations

Abstract

Thermodynamic and mechanical properties of the six known phases in the La-Mg phase diagram, viz. LaMg, LaMg2, LaMg3, La 5Mg41, La2Mg17, and LaMg 12, and their elemental antecedents, Mg and La, are computed with density functional theory (DFT) using the PBE and PBEsol exchange-correlation functionals. Phase stability analyses show that both LaMg2 and La5Mg41 are metastable at low temperatures which is consistent with experiments and vibrational spectra. We generalize an existing approach for computing the crystallographic dependence of Young's modulus and Poisson's ratio, which is presently limited to cubic systems, to address any space group symmetry using 0 K elasticity tensor components (Cij) from DFT. Isothermal and isentropic Cij(T) are computed with the quasiharmonic approximation (QHA) as are the linear thermal expansion of the cubic compounds, the average linear thermal expansion for the non-cubic compounds, the bulk modulus, and the constant pressure heat capacity. A critical comparison of theoretical results from the PBE and PBEsol functionals is made with available experimental data.

Original languageEnglish (US)
Pages (from-to)296-310
Number of pages15
JournalJournal of Alloys and Compounds
Volume512
Issue number1
DOIs
StatePublished - Jan 25 2012

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Cite this