Thin active layer a-Si:H thin-film transistors

D. B. Thomasson, M. Dayawansa, J. H. Chang, T. N. Jackson

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

We show that hydrogenated amorphous silicon thinfilm transistors (TFT's) with active layer thickness less than 50 nm have improved performance for display applications. Using two-dimensional (2-D) modeling, we find previously observed degradation for thin active layers is due to electric field effects in the contact regions of staggered inverted devices and affects only the saturation characteristics; linear region performance actually improves with decreasing thickness. We have fabricated devices with extremely thin active layer (10 nm), and indeed find excellent linear region characteristics. In addition, direct tunneling across the undoped regions at device contacts reduces electric field effects, resulting in excellent saturation region characteristics, and gate-induced channel accumulation reduces the Schottky barrier width at direct metal contacts so that even devices without doped contact regions (i.e., tunneling contacts) are possible.

Original languageEnglish (US)
Pages (from-to)117-119
Number of pages3
JournalIEEE Electron Device Letters
Volume18
Issue number3
DOIs
StatePublished - Mar 1 1997

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Thin active layer a-Si:H thin-film transistors'. Together they form a unique fingerprint.

Cite this