Three-dimensional simulations of reactive gas uptake in single airway bifurcations

Adekemi B. Taylor, Ali Borhan, James S. Ultman

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

The pattern of lung injury induced by the inhalation of ozone (O 3) depends on the dose delivered to different tissues in the airways. This study examined the distribution of O3 uptake in a single, symmetrically branched airway bifurcation. Reaction in the epithelial lining fluid was assumed to be so rapid that O3 concentration was negligible along the entire surface of the bifurcation wall. Three-dimensional numerical solutions of the continuity, Navier-Stokes and convection-diffusion equations were obtained for steady inspiratory and expiratory flows at Reynolds numbers ranging from 100 to 500. The total rate of O3 uptake was found to increase with increasing flow rate during both inspiration and expiration. Hot spots of O3 flux appeared at the carina of the bifurcation for virtually all inspiratory and expiratory Reynolds numbers considered in the simulations. At the lowest expiratory Reynolds number, however, the location of the maximum flux was shifted to the outer wall of the daughter branch. For expiratory flow, additional hot spots of flux were found on the parent branch wall just downstream of the branching region. In all cases, O3 uptake in the single bifurcation was larger than that in a straight tube of equal inlet radius and wall surface area. This study provides insight into the effect of flow conditions on O3 uptake and dose distribution in individual bifurcations.

Original languageEnglish (US)
Pages (from-to)235-249
Number of pages15
JournalAnnals of Biomedical Engineering
Volume35
Issue number2
DOIs
StatePublished - Feb 1 2007

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Three-dimensional simulations of reactive gas uptake in single airway bifurcations'. Together they form a unique fingerprint.

  • Cite this