Toll-like receptor 3 ligand and retinoic acid enhance germinal center formation and increase the tetanus toxoid vaccine response

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Immunizations with T-cell-dependent antigens induce the formation of germinal centers (GC), unique lymphoid microenvironments in which antigen-activated B cells undergo class switching, affinity maturation, and differentiation into memory B cells. Poly(I:C) (PIC), a double-stranded RNA, and retinoic acid (RA), a metabolite of vitamin A which induces cell differentiation, have been shown to augment both primary and memory anti-tetanus toxoid (anti-TT) IgG responses. However, their influence on the GC reaction is unknown. In the present study, 6-week-old C57BL/6 mice were immunized with TT and cotreated with PIC, RA, or both. The splenic GC reaction was evaluated using immunofluorescence staining 10 days after TT priming. Each treatment enhanced the TT-induced GC formation (number of GC/follicle and GC area) about two- to threefold, which correlated with the titers of plasma anti-TT immunoglobulin G (IgG). Isotype switching to IgG1 was dramatically stimulated, with the greatest increase in IgG1-positive GC B cells induced by RA-PIC (P < 0.001). Moreover, PIC alone and RA-PIC robustly promoted the formation of the follicular dendritic cell (FDC) network in the GC light zone. PIC and RA-PIC also increased IgG1-positive B cells in the periarterial lymphatic sheath regions, where most IgG1-positive cells were plasma cells (CD138/syndecan-1 positive), suggesting that plasma cell generation was also enhanced in non-GC regions. The stimulation of several processes, including antigen-induced GC formation, isotype switching, FDC network formation within GC, and plasma cell differentiation by RA and/or PIC, suggests that this nutritional-immunological combination could be an effective means of promoting a robust vaccine response.

Original languageEnglish (US)
Pages (from-to)1476-1484
Number of pages9
JournalClinical and Vaccine Immunology
Volume16
Issue number10
DOIs
StatePublished - Oct 1 2009

Fingerprint

Toll-Like Receptor 3
Tetanus Toxoid
Germinal Center
Tretinoin
Vaccines
Immunoglobulin G
Ligands
Cells
Plasmas
Immunoglobulin Class Switching
Antigens
B-Lymphocytes
Plasma Cells
Follicular Dendritic Cells
Syndecan-1
Immunization
Data storage equipment
Poly I-C
T-cells
Double-Stranded RNA

All Science Journal Classification (ASJC) codes

  • Immunology and Allergy
  • Immunology
  • Clinical Biochemistry
  • Microbiology (medical)

Cite this

@article{eee2906d727d409cb9d0a0563e158b02,
title = "Toll-like receptor 3 ligand and retinoic acid enhance germinal center formation and increase the tetanus toxoid vaccine response",
abstract = "Immunizations with T-cell-dependent antigens induce the formation of germinal centers (GC), unique lymphoid microenvironments in which antigen-activated B cells undergo class switching, affinity maturation, and differentiation into memory B cells. Poly(I:C) (PIC), a double-stranded RNA, and retinoic acid (RA), a metabolite of vitamin A which induces cell differentiation, have been shown to augment both primary and memory anti-tetanus toxoid (anti-TT) IgG responses. However, their influence on the GC reaction is unknown. In the present study, 6-week-old C57BL/6 mice were immunized with TT and cotreated with PIC, RA, or both. The splenic GC reaction was evaluated using immunofluorescence staining 10 days after TT priming. Each treatment enhanced the TT-induced GC formation (number of GC/follicle and GC area) about two- to threefold, which correlated with the titers of plasma anti-TT immunoglobulin G (IgG). Isotype switching to IgG1 was dramatically stimulated, with the greatest increase in IgG1-positive GC B cells induced by RA-PIC (P < 0.001). Moreover, PIC alone and RA-PIC robustly promoted the formation of the follicular dendritic cell (FDC) network in the GC light zone. PIC and RA-PIC also increased IgG1-positive B cells in the periarterial lymphatic sheath regions, where most IgG1-positive cells were plasma cells (CD138/syndecan-1 positive), suggesting that plasma cell generation was also enhanced in non-GC regions. The stimulation of several processes, including antigen-induced GC formation, isotype switching, FDC network formation within GC, and plasma cell differentiation by RA and/or PIC, suggests that this nutritional-immunological combination could be an effective means of promoting a robust vaccine response.",
author = "Yifan Ma and Ross, {A. Catharine}",
year = "2009",
month = "10",
day = "1",
doi = "10.1128/CVI.00282-09",
language = "English (US)",
volume = "16",
pages = "1476--1484",
journal = "Clinical and Vaccine Immunology",
issn = "1556-6811",
publisher = "American Society for Microbiology",
number = "10",

}

TY - JOUR

T1 - Toll-like receptor 3 ligand and retinoic acid enhance germinal center formation and increase the tetanus toxoid vaccine response

AU - Ma, Yifan

AU - Ross, A. Catharine

PY - 2009/10/1

Y1 - 2009/10/1

N2 - Immunizations with T-cell-dependent antigens induce the formation of germinal centers (GC), unique lymphoid microenvironments in which antigen-activated B cells undergo class switching, affinity maturation, and differentiation into memory B cells. Poly(I:C) (PIC), a double-stranded RNA, and retinoic acid (RA), a metabolite of vitamin A which induces cell differentiation, have been shown to augment both primary and memory anti-tetanus toxoid (anti-TT) IgG responses. However, their influence on the GC reaction is unknown. In the present study, 6-week-old C57BL/6 mice were immunized with TT and cotreated with PIC, RA, or both. The splenic GC reaction was evaluated using immunofluorescence staining 10 days after TT priming. Each treatment enhanced the TT-induced GC formation (number of GC/follicle and GC area) about two- to threefold, which correlated with the titers of plasma anti-TT immunoglobulin G (IgG). Isotype switching to IgG1 was dramatically stimulated, with the greatest increase in IgG1-positive GC B cells induced by RA-PIC (P < 0.001). Moreover, PIC alone and RA-PIC robustly promoted the formation of the follicular dendritic cell (FDC) network in the GC light zone. PIC and RA-PIC also increased IgG1-positive B cells in the periarterial lymphatic sheath regions, where most IgG1-positive cells were plasma cells (CD138/syndecan-1 positive), suggesting that plasma cell generation was also enhanced in non-GC regions. The stimulation of several processes, including antigen-induced GC formation, isotype switching, FDC network formation within GC, and plasma cell differentiation by RA and/or PIC, suggests that this nutritional-immunological combination could be an effective means of promoting a robust vaccine response.

AB - Immunizations with T-cell-dependent antigens induce the formation of germinal centers (GC), unique lymphoid microenvironments in which antigen-activated B cells undergo class switching, affinity maturation, and differentiation into memory B cells. Poly(I:C) (PIC), a double-stranded RNA, and retinoic acid (RA), a metabolite of vitamin A which induces cell differentiation, have been shown to augment both primary and memory anti-tetanus toxoid (anti-TT) IgG responses. However, their influence on the GC reaction is unknown. In the present study, 6-week-old C57BL/6 mice were immunized with TT and cotreated with PIC, RA, or both. The splenic GC reaction was evaluated using immunofluorescence staining 10 days after TT priming. Each treatment enhanced the TT-induced GC formation (number of GC/follicle and GC area) about two- to threefold, which correlated with the titers of plasma anti-TT immunoglobulin G (IgG). Isotype switching to IgG1 was dramatically stimulated, with the greatest increase in IgG1-positive GC B cells induced by RA-PIC (P < 0.001). Moreover, PIC alone and RA-PIC robustly promoted the formation of the follicular dendritic cell (FDC) network in the GC light zone. PIC and RA-PIC also increased IgG1-positive B cells in the periarterial lymphatic sheath regions, where most IgG1-positive cells were plasma cells (CD138/syndecan-1 positive), suggesting that plasma cell generation was also enhanced in non-GC regions. The stimulation of several processes, including antigen-induced GC formation, isotype switching, FDC network formation within GC, and plasma cell differentiation by RA and/or PIC, suggests that this nutritional-immunological combination could be an effective means of promoting a robust vaccine response.

UR - http://www.scopus.com/inward/record.url?scp=70349671793&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70349671793&partnerID=8YFLogxK

U2 - 10.1128/CVI.00282-09

DO - 10.1128/CVI.00282-09

M3 - Article

VL - 16

SP - 1476

EP - 1484

JO - Clinical and Vaccine Immunology

JF - Clinical and Vaccine Immunology

SN - 1556-6811

IS - 10

ER -