Toward the integrated framework analysis of linkages among agrobiodiversity, livelihood diversification, ecological systems, and sustainability amid global change

Karl Stephen Zimmerer, Steven J. Vanek

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Scientific and policy interest in the biological diversity of agriculture (agrobiodiversity) is expanding amid global socioeconomic and environmental changes and sustainability interests. The majority of global agrobiodiversity is produced in smallholder food-growing. We use meta-analyses in an integrated framework to examine the interactions of smallholder agrobiodiversity with: (1) livelihood processes, especially migration, including impacts on agrobiodiversity as well as the interconnected resource systems of soil, water, and uncultivated habitats; and (2) plant-soil ecological systems. We hypothesize these interactions depend on: (1) scope of livelihood diversification and type resource system; and (2) plant residues and above-/belowground component ecological specificity. Findings show: (1) livelihood diversification is linked to varied environmental factors that range from rampant degradation to enhancing sustainability; and (2) significant ecological coupling of aboveground and soil agrobiodiversity (AGSOBIO assemblages). The environmental impacts of livelihood interactions correspond to variation of diversification (migration, on-farm diversification) and resource system (i.e., agrobiodiversity per se, soil, water). Our findings also reveal mutually dependent interactions of aboveground and soil agrobiodiversity. Results identify livelihood diversification-induced reduction of environmental resource quality with lagged agrobiodiversity declines as a potentially major avenue of global change. Our contribution re-frames livelihood interactions to include both agrobiodiversity and ecological systems. We discuss this integrated social-environmental re-framing through the proposed spatial geographic schema of regional agri-food spaces with distinctive matrices of livelihood strategies and relations to biodiversity and resources. This re-framing can be used to integrate livelihood, agrobiodiversity, and ecological analysis and to guide policy and scientific approaches for sustainability in agriculture and food-growing.

Original languageEnglish (US)
Article number10
JournalLand
Volume5
Issue number2
DOIs
StatePublished - Jun 1 2016

Fingerprint

global change
sustainability
resource
smallholder
food
soil water
agriculture
plant residue
soil
livelihood
analysis
environmental change
environmental factor
environmental impact
farm
biodiversity
degradation
matrix
habitat

All Science Journal Classification (ASJC) codes

  • Global and Planetary Change
  • Ecology
  • Nature and Landscape Conservation

Cite this

@article{bfc5baa07432470391148e7f5b59ce3a,
title = "Toward the integrated framework analysis of linkages among agrobiodiversity, livelihood diversification, ecological systems, and sustainability amid global change",
abstract = "Scientific and policy interest in the biological diversity of agriculture (agrobiodiversity) is expanding amid global socioeconomic and environmental changes and sustainability interests. The majority of global agrobiodiversity is produced in smallholder food-growing. We use meta-analyses in an integrated framework to examine the interactions of smallholder agrobiodiversity with: (1) livelihood processes, especially migration, including impacts on agrobiodiversity as well as the interconnected resource systems of soil, water, and uncultivated habitats; and (2) plant-soil ecological systems. We hypothesize these interactions depend on: (1) scope of livelihood diversification and type resource system; and (2) plant residues and above-/belowground component ecological specificity. Findings show: (1) livelihood diversification is linked to varied environmental factors that range from rampant degradation to enhancing sustainability; and (2) significant ecological coupling of aboveground and soil agrobiodiversity (AGSOBIO assemblages). The environmental impacts of livelihood interactions correspond to variation of diversification (migration, on-farm diversification) and resource system (i.e., agrobiodiversity per se, soil, water). Our findings also reveal mutually dependent interactions of aboveground and soil agrobiodiversity. Results identify livelihood diversification-induced reduction of environmental resource quality with lagged agrobiodiversity declines as a potentially major avenue of global change. Our contribution re-frames livelihood interactions to include both agrobiodiversity and ecological systems. We discuss this integrated social-environmental re-framing through the proposed spatial geographic schema of regional agri-food spaces with distinctive matrices of livelihood strategies and relations to biodiversity and resources. This re-framing can be used to integrate livelihood, agrobiodiversity, and ecological analysis and to guide policy and scientific approaches for sustainability in agriculture and food-growing.",
author = "Zimmerer, {Karl Stephen} and Vanek, {Steven J.}",
year = "2016",
month = "6",
day = "1",
doi = "10.3390/land5020010",
language = "English (US)",
volume = "5",
journal = "Land",
issn = "2073-445X",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "2",

}

TY - JOUR

T1 - Toward the integrated framework analysis of linkages among agrobiodiversity, livelihood diversification, ecological systems, and sustainability amid global change

AU - Zimmerer, Karl Stephen

AU - Vanek, Steven J.

PY - 2016/6/1

Y1 - 2016/6/1

N2 - Scientific and policy interest in the biological diversity of agriculture (agrobiodiversity) is expanding amid global socioeconomic and environmental changes and sustainability interests. The majority of global agrobiodiversity is produced in smallholder food-growing. We use meta-analyses in an integrated framework to examine the interactions of smallholder agrobiodiversity with: (1) livelihood processes, especially migration, including impacts on agrobiodiversity as well as the interconnected resource systems of soil, water, and uncultivated habitats; and (2) plant-soil ecological systems. We hypothesize these interactions depend on: (1) scope of livelihood diversification and type resource system; and (2) plant residues and above-/belowground component ecological specificity. Findings show: (1) livelihood diversification is linked to varied environmental factors that range from rampant degradation to enhancing sustainability; and (2) significant ecological coupling of aboveground and soil agrobiodiversity (AGSOBIO assemblages). The environmental impacts of livelihood interactions correspond to variation of diversification (migration, on-farm diversification) and resource system (i.e., agrobiodiversity per se, soil, water). Our findings also reveal mutually dependent interactions of aboveground and soil agrobiodiversity. Results identify livelihood diversification-induced reduction of environmental resource quality with lagged agrobiodiversity declines as a potentially major avenue of global change. Our contribution re-frames livelihood interactions to include both agrobiodiversity and ecological systems. We discuss this integrated social-environmental re-framing through the proposed spatial geographic schema of regional agri-food spaces with distinctive matrices of livelihood strategies and relations to biodiversity and resources. This re-framing can be used to integrate livelihood, agrobiodiversity, and ecological analysis and to guide policy and scientific approaches for sustainability in agriculture and food-growing.

AB - Scientific and policy interest in the biological diversity of agriculture (agrobiodiversity) is expanding amid global socioeconomic and environmental changes and sustainability interests. The majority of global agrobiodiversity is produced in smallholder food-growing. We use meta-analyses in an integrated framework to examine the interactions of smallholder agrobiodiversity with: (1) livelihood processes, especially migration, including impacts on agrobiodiversity as well as the interconnected resource systems of soil, water, and uncultivated habitats; and (2) plant-soil ecological systems. We hypothesize these interactions depend on: (1) scope of livelihood diversification and type resource system; and (2) plant residues and above-/belowground component ecological specificity. Findings show: (1) livelihood diversification is linked to varied environmental factors that range from rampant degradation to enhancing sustainability; and (2) significant ecological coupling of aboveground and soil agrobiodiversity (AGSOBIO assemblages). The environmental impacts of livelihood interactions correspond to variation of diversification (migration, on-farm diversification) and resource system (i.e., agrobiodiversity per se, soil, water). Our findings also reveal mutually dependent interactions of aboveground and soil agrobiodiversity. Results identify livelihood diversification-induced reduction of environmental resource quality with lagged agrobiodiversity declines as a potentially major avenue of global change. Our contribution re-frames livelihood interactions to include both agrobiodiversity and ecological systems. We discuss this integrated social-environmental re-framing through the proposed spatial geographic schema of regional agri-food spaces with distinctive matrices of livelihood strategies and relations to biodiversity and resources. This re-framing can be used to integrate livelihood, agrobiodiversity, and ecological analysis and to guide policy and scientific approaches for sustainability in agriculture and food-growing.

UR - http://www.scopus.com/inward/record.url?scp=85014859283&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85014859283&partnerID=8YFLogxK

U2 - 10.3390/land5020010

DO - 10.3390/land5020010

M3 - Article

VL - 5

JO - Land

JF - Land

SN - 2073-445X

IS - 2

M1 - 10

ER -