Towards an integrated materials characterization toolbox

Ian M. Robertson, Christopher A. Schuh, John S. Vetrano, Nigel D. Browning, David P. Field, Dorte Juul Jensen, Michael K. Miller, Ian Baker, David C. Dunand, Rafal Dunin-Borkowski, Bernd Kabius, Tom Kelly, Sergio Lozano-Perez, Amit Misra, Gregory S. Rohrer, Anthony D. Rollett, Mitra L. Taheri, Greg B. Thompson, Michael Uchic, Xun Li WangGary Was

Research output: Contribution to journalReview article

55 Scopus citations

Abstract

The material characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when material scientists can quantify material structure evolution across spatial and temporal space simultaneously. This will provide insight to reaction dynamics in four-dimensions, spanning multiple orders of magnitude in both temporal and spatial space. This study presents the authors' viewpoint on the material characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom probe tomography; x-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Advances in surface probemicroscopy have been reviewed recently and, therefore, are not included [D.A.Bonnell et al.: Rev.Modern Phys. in Review]. In this study particular attention is paid to studies that have pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the stateof-the-art in characterization and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving material damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.

Original languageEnglish (US)
Pages (from-to)1341-1383
Number of pages43
JournalJournal of Materials Research
Volume26
Issue number11
DOIs
StatePublished - Jun 14 2011

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

Robertson, I. M., Schuh, C. A., Vetrano, J. S., Browning, N. D., Field, D. P., Jensen, D. J., Miller, M. K., Baker, I., Dunand, D. C., Dunin-Borkowski, R., Kabius, B., Kelly, T., Lozano-Perez, S., Misra, A., Rohrer, G. S., Rollett, A. D., Taheri, M. L., Thompson, G. B., Uchic, M., ... Was, G. (2011). Towards an integrated materials characterization toolbox. Journal of Materials Research, 26(11), 1341-1383. https://doi.org/10.1557/jmr.2011.41