TY - JOUR
T1 - Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood
AU - Marrelli, Mauro T.
AU - Li, Chaoyang
AU - Rasgon, Jason L.
AU - Jacobs-Lorena, Marcelo
PY - 2007/3/27
Y1 - 2007/3/27
N2 - The introduction of genes that impair Plasmodium development into mosquito populations is a strategy being considered for malaria control. The effect of the transgene on mosquito fitness is a crucial parameter influencing the success of this approach. We have previously shown that anopheline mosquitoes expressing the SM1 peptide in the midgut lumen are impaired for transmission of Plasmodium berghei. Moreover, the transgenic mosquitoes had no noticeable fitness load compared with nontransgenic mosquitoes when fed on noninfected mice. Here we show that when fed on mice infected with P. berghei, these transgenic mosquitoes are more fit (higher fecundity and lower mortality) than sibling non-transgenic mosquitoes. In cage experiments, transgenic mosquitoes gradually replaced nontransgenics when mosquitoes were maintained on mice infected with gametocyte-producing parasites (strain ANKA 2.34) but not when maintained on mice infected with gametocyte-deficient parasites (strain ANKA 2.33). These findings suggest that when feeding on Plasmodium-infected blood, transgenic malaria-resistant mosquitoes have a selective advantage over nontransgenic mosquitoes. This fitness advantage has important implications for devising malaria control strategies by means of genetic modification of mosquitoes.
AB - The introduction of genes that impair Plasmodium development into mosquito populations is a strategy being considered for malaria control. The effect of the transgene on mosquito fitness is a crucial parameter influencing the success of this approach. We have previously shown that anopheline mosquitoes expressing the SM1 peptide in the midgut lumen are impaired for transmission of Plasmodium berghei. Moreover, the transgenic mosquitoes had no noticeable fitness load compared with nontransgenic mosquitoes when fed on noninfected mice. Here we show that when fed on mice infected with P. berghei, these transgenic mosquitoes are more fit (higher fecundity and lower mortality) than sibling non-transgenic mosquitoes. In cage experiments, transgenic mosquitoes gradually replaced nontransgenics when mosquitoes were maintained on mice infected with gametocyte-producing parasites (strain ANKA 2.34) but not when maintained on mice infected with gametocyte-deficient parasites (strain ANKA 2.33). These findings suggest that when feeding on Plasmodium-infected blood, transgenic malaria-resistant mosquitoes have a selective advantage over nontransgenic mosquitoes. This fitness advantage has important implications for devising malaria control strategies by means of genetic modification of mosquitoes.
UR - http://www.scopus.com/inward/record.url?scp=34248395976&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34248395976&partnerID=8YFLogxK
U2 - 10.1073/pnas.0609809104
DO - 10.1073/pnas.0609809104
M3 - Article
C2 - 17372227
AN - SCOPUS:34248395976
VL - 104
SP - 5580
EP - 5583
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 13
ER -