Transient receptor potential ion channel Trpm7 regulates exocrine pancreatic epithelial proliferation by Mg2+-sensitive Socs3a signaling in development and cancer

Nelson S. Yee, Weiqiang Zhou, I. Chau Liang

Research output: Contribution to journalArticle

63 Citations (Scopus)

Abstract

Genetic analysis of pancreatic development has provided new insights into the mechanisms underlying the formation of exocrine pancreatic neoplasia. Zebrafish sweetbread (swd) mutants develop hypoplastic acini and dysmorphic ducts in the exocrine pancreas, with impeded progression of cell division cycle and of epithelial growth. Positional cloning and allelic complementation have revealed that the swd mutations affect the transient receptor potential melastatin-subfamily member 7 (trpm7) gene, which encodes a divalent cation-permeable channel with kinase activity. Supplementary Mg2+ partially rescued the exocrine pancreatic defects of the trpm7 mutants by improving cell-cycle progression and growth and repressing the suppressor of cytokine signaling 3a (socs3a) gene. The role of Socs3a in Trpm7-mediated signaling is supported by the findings that socs3a mRNA level is elevated in the trpm7 mutants, and antisense inhibition of socs3a expression improved their exocrine pancreatic growth. TRPM7 is generally overexpressed in human pancreatic adenocarcinoma. TRPM7-deficient cells are impaired in proliferation and arrested in the G0-G1 phases of the cell division cycle. Supplementary Mg 2+ rescued the proliferative defect of the TRPM7-deficient cells. Results of this study indicate that Trpm7 regulates exocrine pancreatic development via the Mg2+-sensitive Socs3a pathway, and suggest that aberrant TRPM7-mediated signaling contributes to pancreatic carcinogenesis.

Original languageEnglish (US)
Pages (from-to)240-254
Number of pages15
JournalDMM Disease Models and Mechanisms
Volume4
Issue number2
DOIs
StatePublished - Mar 1 2011

Fingerprint

Transient Receptor Potential Channels
Ion Channels
Cell Cycle
Cytokines
Growth
Cells
Exocrine Pancreas
Neoplasms
Cell Cycle Resting Phase
Divalent Cations
G1 Phase
Zebrafish
Genes
Organism Cloning
Carcinogenesis
Adenocarcinoma
Phosphotransferases
Defects
Cloning
Messenger RNA

All Science Journal Classification (ASJC) codes

  • Neuroscience (miscellaneous)
  • Medicine (miscellaneous)
  • Immunology and Microbiology (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

@article{884eee48a83b42dabade23fcf2ad2391,
title = "Transient receptor potential ion channel Trpm7 regulates exocrine pancreatic epithelial proliferation by Mg2+-sensitive Socs3a signaling in development and cancer",
abstract = "Genetic analysis of pancreatic development has provided new insights into the mechanisms underlying the formation of exocrine pancreatic neoplasia. Zebrafish sweetbread (swd) mutants develop hypoplastic acini and dysmorphic ducts in the exocrine pancreas, with impeded progression of cell division cycle and of epithelial growth. Positional cloning and allelic complementation have revealed that the swd mutations affect the transient receptor potential melastatin-subfamily member 7 (trpm7) gene, which encodes a divalent cation-permeable channel with kinase activity. Supplementary Mg2+ partially rescued the exocrine pancreatic defects of the trpm7 mutants by improving cell-cycle progression and growth and repressing the suppressor of cytokine signaling 3a (socs3a) gene. The role of Socs3a in Trpm7-mediated signaling is supported by the findings that socs3a mRNA level is elevated in the trpm7 mutants, and antisense inhibition of socs3a expression improved their exocrine pancreatic growth. TRPM7 is generally overexpressed in human pancreatic adenocarcinoma. TRPM7-deficient cells are impaired in proliferation and arrested in the G0-G1 phases of the cell division cycle. Supplementary Mg 2+ rescued the proliferative defect of the TRPM7-deficient cells. Results of this study indicate that Trpm7 regulates exocrine pancreatic development via the Mg2+-sensitive Socs3a pathway, and suggest that aberrant TRPM7-mediated signaling contributes to pancreatic carcinogenesis.",
author = "Yee, {Nelson S.} and Weiqiang Zhou and Liang, {I. Chau}",
year = "2011",
month = "3",
day = "1",
doi = "10.1242/dmm.004564",
language = "English (US)",
volume = "4",
pages = "240--254",
journal = "DMM Disease Models and Mechanisms",
issn = "1754-8403",
publisher = "Company of Biologists Ltd",
number = "2",

}

TY - JOUR

T1 - Transient receptor potential ion channel Trpm7 regulates exocrine pancreatic epithelial proliferation by Mg2+-sensitive Socs3a signaling in development and cancer

AU - Yee, Nelson S.

AU - Zhou, Weiqiang

AU - Liang, I. Chau

PY - 2011/3/1

Y1 - 2011/3/1

N2 - Genetic analysis of pancreatic development has provided new insights into the mechanisms underlying the formation of exocrine pancreatic neoplasia. Zebrafish sweetbread (swd) mutants develop hypoplastic acini and dysmorphic ducts in the exocrine pancreas, with impeded progression of cell division cycle and of epithelial growth. Positional cloning and allelic complementation have revealed that the swd mutations affect the transient receptor potential melastatin-subfamily member 7 (trpm7) gene, which encodes a divalent cation-permeable channel with kinase activity. Supplementary Mg2+ partially rescued the exocrine pancreatic defects of the trpm7 mutants by improving cell-cycle progression and growth and repressing the suppressor of cytokine signaling 3a (socs3a) gene. The role of Socs3a in Trpm7-mediated signaling is supported by the findings that socs3a mRNA level is elevated in the trpm7 mutants, and antisense inhibition of socs3a expression improved their exocrine pancreatic growth. TRPM7 is generally overexpressed in human pancreatic adenocarcinoma. TRPM7-deficient cells are impaired in proliferation and arrested in the G0-G1 phases of the cell division cycle. Supplementary Mg 2+ rescued the proliferative defect of the TRPM7-deficient cells. Results of this study indicate that Trpm7 regulates exocrine pancreatic development via the Mg2+-sensitive Socs3a pathway, and suggest that aberrant TRPM7-mediated signaling contributes to pancreatic carcinogenesis.

AB - Genetic analysis of pancreatic development has provided new insights into the mechanisms underlying the formation of exocrine pancreatic neoplasia. Zebrafish sweetbread (swd) mutants develop hypoplastic acini and dysmorphic ducts in the exocrine pancreas, with impeded progression of cell division cycle and of epithelial growth. Positional cloning and allelic complementation have revealed that the swd mutations affect the transient receptor potential melastatin-subfamily member 7 (trpm7) gene, which encodes a divalent cation-permeable channel with kinase activity. Supplementary Mg2+ partially rescued the exocrine pancreatic defects of the trpm7 mutants by improving cell-cycle progression and growth and repressing the suppressor of cytokine signaling 3a (socs3a) gene. The role of Socs3a in Trpm7-mediated signaling is supported by the findings that socs3a mRNA level is elevated in the trpm7 mutants, and antisense inhibition of socs3a expression improved their exocrine pancreatic growth. TRPM7 is generally overexpressed in human pancreatic adenocarcinoma. TRPM7-deficient cells are impaired in proliferation and arrested in the G0-G1 phases of the cell division cycle. Supplementary Mg 2+ rescued the proliferative defect of the TRPM7-deficient cells. Results of this study indicate that Trpm7 regulates exocrine pancreatic development via the Mg2+-sensitive Socs3a pathway, and suggest that aberrant TRPM7-mediated signaling contributes to pancreatic carcinogenesis.

UR - http://www.scopus.com/inward/record.url?scp=79952341316&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79952341316&partnerID=8YFLogxK

U2 - 10.1242/dmm.004564

DO - 10.1242/dmm.004564

M3 - Article

C2 - 21183474

AN - SCOPUS:79952341316

VL - 4

SP - 240

EP - 254

JO - DMM Disease Models and Mechanisms

JF - DMM Disease Models and Mechanisms

SN - 1754-8403

IS - 2

ER -