Translation groups of Steiner loops

Karl Strambach, Izabella Stuhl

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

If the order of any product of two different translations of a finite Steiner quasigroup of size n > 3 is odd, then the group G generated by the translations of the corresponding Steiner loop of order n + 1 contains the alternating group of degree n + 1.

Original languageEnglish (US)
Pages (from-to)4225-4227
Number of pages3
JournalDiscrete Mathematics
Volume309
Issue number13
DOIs
StatePublished - Jul 6 2009

Fingerprint

Quasigroup
Alternating group
Odd

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

Cite this

Strambach, Karl ; Stuhl, Izabella. / Translation groups of Steiner loops. In: Discrete Mathematics. 2009 ; Vol. 309, No. 13. pp. 4225-4227.
@article{1b7d80a8f13043d5b2141f5766ab5cff,
title = "Translation groups of Steiner loops",
abstract = "If the order of any product of two different translations of a finite Steiner quasigroup of size n > 3 is odd, then the group G generated by the translations of the corresponding Steiner loop of order n + 1 contains the alternating group of degree n + 1.",
author = "Karl Strambach and Izabella Stuhl",
year = "2009",
month = "7",
day = "6",
doi = "10.1016/j.disc.2008.12.019",
language = "English (US)",
volume = "309",
pages = "4225--4227",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "13",

}

Translation groups of Steiner loops. / Strambach, Karl; Stuhl, Izabella.

In: Discrete Mathematics, Vol. 309, No. 13, 06.07.2009, p. 4225-4227.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Translation groups of Steiner loops

AU - Strambach, Karl

AU - Stuhl, Izabella

PY - 2009/7/6

Y1 - 2009/7/6

N2 - If the order of any product of two different translations of a finite Steiner quasigroup of size n > 3 is odd, then the group G generated by the translations of the corresponding Steiner loop of order n + 1 contains the alternating group of degree n + 1.

AB - If the order of any product of two different translations of a finite Steiner quasigroup of size n > 3 is odd, then the group G generated by the translations of the corresponding Steiner loop of order n + 1 contains the alternating group of degree n + 1.

UR - http://www.scopus.com/inward/record.url?scp=67349131553&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67349131553&partnerID=8YFLogxK

U2 - 10.1016/j.disc.2008.12.019

DO - 10.1016/j.disc.2008.12.019

M3 - Article

AN - SCOPUS:67349131553

VL - 309

SP - 4225

EP - 4227

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 13

ER -