Treating time with all due seriousness

Luke Keele, Suzanna Linn, Clayton Mc Laughlin Webb

Research output: Contribution to journalArticlepeer-review

38 Scopus citations


In this article, we highlight three points. First, we counter Grant and Lebo's claim that the error correction model (ECM) cannot be applied to stationary data. We maintain that when data are properly stationary, the ECM is an entirely appropriate model. We clarify that for a model to be properly stationary, it must be balanced. Second, we contend that while fractional integration techniques can be useful, they also have important weaknesses, especially when applied to many time series typical in political science. We also highlight two related but often ignored complications in time series: low power and overfitting. We argue that the statistical tests used in time-series analyses have little power to detect differences in many of the sample sizes typical in political science. Moreover, given the small sample sizes, many analysts overfit their time-series models. Overfitting occurs when a statical model describes random error or noise instead of the underlying relationship. We argue that the results in the Grant and Lebo replications could easily be a function of overfitting.

Original languageEnglish (US)
Pages (from-to)31-41
Number of pages11
JournalPolitical Analysis
Issue number1
StatePublished - Dec 1 2016

All Science Journal Classification (ASJC) codes

  • Sociology and Political Science
  • Political Science and International Relations


Dive into the research topics of 'Treating time with all due seriousness'. Together they form a unique fingerprint.

Cite this