Triplet excited state energies and phosphorescence spectra of (Bacterio)chlorophylls

Daniel A. Hartzler, Dariusz M. Niedzwiedzki, Donald Ashley Bryant, Robert E. Blankenship, Yulia Pushkar, Sergei Savikhin

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

(Bacterio)Chlorophyll ((B)Chl) molecules play a major role in photosynthetic light-harvesting proteins, and the knowledge of their triplet state energies is essential to understand the mechanisms of photodamage and photoprotection, as the triplet excitation energy of (B)Chl molecules can readily generate highly reactive singlet oxygen. The triplet state energies of 10 natural chlorophyll (Chl a, b, c2, d) and bacteriochlorophyll (BChl a, b, c, d, e, g) molecules and one bacteriopheophytin (BPheo g) have been directly determined via their phosphorescence spectra. Phosphorescence of four molecules (Chl c2, BChl e and g, BPheo g) was characterized for the first time. Additionally, the relative phosphorescence to fluorescence quantum yield for each molecule was determined. The measurements were performed at 77K using solvents providing a six-coordinate environment of the Mg2+ ion, which allows direct comparison of these (B)Chls. Density functional calculations of the triplet state energies show good correlation with the experimentally determined energies. The correlation determined computationally was used to predict the triplet energies of three additional (B)Chl molecules: Chl c1, Chl f, and BChl f.

Original languageEnglish (US)
Pages (from-to)7221-7232
Number of pages12
JournalJournal of Physical Chemistry B
Volume118
Issue number26
DOIs
StatePublished - Jul 3 2014

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Triplet excited state energies and phosphorescence spectra of (Bacterio)chlorophylls'. Together they form a unique fingerprint.

Cite this