TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion

Jihong Xing, Jian Lu, Jianhua Li

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.

Original languageEnglish (US)
Article number249
JournalFrontiers in Physiology
Volume6
Issue numberSEP
DOIs
StatePublished - Jan 1 2015

Fingerprint

Femoral Artery
Muscles
Spinal Ganglia
Hindlimb
Muscle Contraction
Blood Pressure
Transient Receptor Potential Channels
Unmyelinated Nerve Fibers
Nerve Fibers
Tendons
Reflex
Arterial Pressure
Up-Regulation
Ischemia
Kidney
Neurons
Proteins

All Science Journal Classification (ASJC) codes

  • Physiology
  • Physiology (medical)

Cite this

@article{fe72654e1e9b45e79c0b42beebcdd696,
title = "TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion",
abstract = "Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.",
author = "Jihong Xing and Jian Lu and Jianhua Li",
year = "2015",
month = "1",
day = "1",
doi = "10.3389/fphys.2015.00249",
language = "English (US)",
volume = "6",
journal = "Frontiers in Physiology",
issn = "1664-042X",
publisher = "Frontiers Research Foundation",
number = "SEP",

}

TY - JOUR

T1 - TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion

AU - Xing, Jihong

AU - Lu, Jian

AU - Li, Jianhua

PY - 2015/1/1

Y1 - 2015/1/1

N2 - Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.

AB - Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.

UR - http://www.scopus.com/inward/record.url?scp=84944719142&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84944719142&partnerID=8YFLogxK

U2 - 10.3389/fphys.2015.00249

DO - 10.3389/fphys.2015.00249

M3 - Article

C2 - 26441669

AN - SCOPUS:84944719142

VL - 6

JO - Frontiers in Physiology

JF - Frontiers in Physiology

SN - 1664-042X

IS - SEP

M1 - 249

ER -