@article{e1591bdbd88e4d23986cd7d2fbe8f969,
title = "Truncated Hecke-Rogers type series",
abstract = "The recent work of George Andrews and Mircea Merca on the truncated version of Euler's pentagonal number theorem has opened up a new study on truncated theta series. Since then several papers on the topic have followed. The main purpose of this paper is to generalize the study to Hecke-Rogers type double series, which are associated with some interesting partition functions. Our proofs heavily rely on a formula from the work of Zhi-Guo Liu on the q-partial differential equations and q-series.",
author = "Chun Wang and Yee, {Ae Ja}",
note = "Funding Information: The first author was partially supported by the outstanding doctoral dissertation cultivation plan of action (No. YB2016028 ) from East China Normal University . The second author was partially supported by a grant (# 280903 ) from the Simons Foundation . Funding Information: We thank the anonymous referee for his/her careful reading and making such valuable comments. The first author is grateful to the China Scholarship Council (CSC) for supporting her study at the Pennsylvania State University. She also would like to thank the Department of Mathematics at the Pennsylvania State University for its hospitality. Publisher Copyright: {\textcopyright} 2020 Elsevier Inc.",
year = "2020",
month = may,
day = "13",
doi = "10.1016/j.aim.2020.107051",
language = "English (US)",
volume = "365",
journal = "Advances in Mathematics",
issn = "0001-8708",
publisher = "Academic Press Inc.",
}