Abstract

Pancreatic ductal adenocarcinoma (PDAC) tumor growth is enhanced by tumor-associated macrophages (TAMs), yet the mechanisms by which tumor cells and TAMs communicate are not fully understood. Here we show that exosomes secreted by PDAC cell lines differed in their surface proteins, lipid composition, and efficiency of fusing with THP-1-derived macrophages in vitro. Exosomes from AsPC-1, an ascites-derived human PDAC cell line, were enriched in ICAM-1, which mediated their docking to macrophages through interactions with surface-exposed CD11c on macrophages. AsPC-1 exosomes also contained much higher levels of arachidonic acid (AA), and they fused at a higher rate with THP-1-derived macrophages than did exosomes from other PDAC cell lines or from an immortalized normal pancreatic ductal epithelial cell line (HPDE) H6c7. Phospholipase A2 enzymatic cleavage of arachidonic acid from AsPC-1 exosomes reduced fusion efficiency. PGE2 secretion was elevated in macrophages treated with AsPC-1 exosomes but not in macrophages treated with exosomes from other cell lines, suggesting a functional role for the AsPC-1 exosome-delivered arachidonic acid in macrophages. Non-polarized (M0) macrophages treated with AsPC-1 exosomes had increased levels of surface markers indicative of polarization to an immunosuppressive M2-like phenotype (CD14hi CD163hi CD206hi). Furthermore, macrophages treated with AsPC-1 exosomes had significantly increased secretion of pro-tumoral, bioactive molecules including VEGF, MCP-1, IL-6, IL-1β, MMP-9, and TNFα. Together, these results demonstrate that compared to exosomes from other primary tumor-derived PDAC cell lines, AsPC-1 exosomes alter THP-1-derived macrophage phenotype and function. AsPC-1 exosomes mediate communication between tumor cells and TAMs that contributes to tumor progression.

Original languageEnglish (US)
Article numbere0206759
JournalPloS one
Volume13
Issue number11
DOIs
StatePublished - Nov 2018

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Tumor-promoting effects of pancreatic cancer cell exosomes on THP-1-derived macrophages'. Together they form a unique fingerprint.

  • Cite this