Abstract
The influence of turbulence modeling strategy for computational fluid dynamics simulations of rotor hub flows is assessed. Two specific modeling strategies are discussed and applied to a representative rotor hub geometry that was the focus of the First Rotor Hub Flow Prediction Workshop and for which high-Reynolds number force data and wake measurements are available from a water-tunnel experiment. Simulations with both turbulence models were performed on the same structured, overset grid system using the same flow solver. Identical solution strategies were employed, including time accuracy, spatial discretization, and implicit algorithm. Several aspects of the solutions are compared, including mass-flow rate through the domain, unsteady drag characteristics, and unsteady wake characteristics.
Original language | English (US) |
---|---|
Pages (from-to) | 387-398 |
Number of pages | 12 |
Journal | Annual Forum Proceedings - AHS International |
State | Published - 2017 |
Event | 73rd American Helicopter Society International Annual Forum and Technology Display 2017 - Fort Worth, United States Duration: May 9 2017 → May 11 2017 |
All Science Journal Classification (ASJC) codes
- Engineering(all)