TY - JOUR
T1 - Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea)
AU - Urban, Julie M.
AU - Cryan, Jason R.
N1 - Funding Information:
We thank M Gruwell for recommending universal primers for use in initial screening and to N Moran for conversations concerning interpretation of findings. For generously providing specimens, we thank M Adams, C Bartlett, G Bellis, K Hill, K Kinser, D Marshall, T McCabe, K Miller, L O’Brien, H Romack, C Simon, M Stiller, G Svenson, M Whiting, M Wilson, S Wilson, and J Zahniser. Specimens collected by the authors were obtained in several countries, and we wish to thank the many contacts and officials who assisted our research through the permitting process; we therefore express our gratitude to (in alphabetical order by country): Belize, Ministry of Natural Resources, the Environment and Industry, Forest Department, Conservation Division and the Belize Agricultural Health Authority (M Windsor, O Ulloa and K Witty), permit nos. CD/60/3/03 and CD/72/2/03 and BAHA certificate no. 08981; Costa Rica, Ministry of Environment and Energy and the National Institute of Biodiversity (IJ Guevara Sequeira and H Ramirez Murillo), permit nos. 128-2003-OFAU and 2529201; Ghana, Wildlife Division, Forestry Commission (V. Attah), permit nos. WD/A.185/Vol.6/22 and 005833; Malaysia, Economic Planning Unit (Munirah Abd. Manan), permit no. 40/200/19/1476; Sarawak, Forests Department and Sarawak Forestry Corp. (H Ali Bin Yusop and L Chong), permit nos. 30/2006 and 08521, and Gunung Mulu World Heritage Area (B Clark, Park Manager); Zambia, Minitry of Tourism, Environment and Natural Resources, Forest Department (F Malaya and L Mulongwe), permit no. FDHQ/101/3/25. This material is based upon work supported by the National Science Foundation, under grant nos. DEB-0342538 and DEB-0949082 and by the New York State Museum. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors, and do not necessarily reflect the views of the National Science Foundation, the New York State Museum, or the North Carolina Museum of Natural Sciences.
PY - 2012
Y1 - 2012
N2 - Background: Members of the hemipteran suborder Auchenorrhyncha (commonly known as planthoppers, tree- and leafhoppers, spittlebugs, and cicadas) are unusual among insects known to harbor endosymbiotic bacteria in that they are associated with diverse assemblages of bacterial endosymbionts. Early light microscopic surveys of species representing the two major lineages of Auchenorrhyncha (the planthopper superfamily Fulgoroidea; and Cicadomorpha, comprising Membracoidea [tree- and leafhoppers], Cercopoidea [spittlebugs], and Cicadoidea [cicadas]), found that most examined species harbored at least two morphologically distinct bacterial endosymbionts, and some harbored as many as six. Recent investigations using molecular techniques have identified multiple obligate bacterial endosymbionts in Cicadomorpha; however, much less is known about endosymbionts of Fulgoroidea. In this study, we present the initial findings of an ongoing PCR-based survey (sequencing 16S rDNA) of planthopper-associated bacteria to document endosymbionts with a long-term history of codiversification with their fulgoroid hosts. Results: Results of PCR surveys and phylogenetic analyses of 16S rDNA recovered a monophyletic clade of Betaproteobacteria associated with planthoppers; this clade included Vidania fulgoroideae, a recently described bacterium identified in exemplars of the planthopper family Cixiidae. We surveyed 77 planthopper species representing 18 fulgoroid families, and detected Vidania in 40 species (representing 13 families). Further, we detected the Sulcia endosymbiont (identified as an obligate endosymbiont of Auchenorrhyncha in previous studies) in 30 of the 40 species harboring Vidania. Concordance of the Vidania phylogeny with the phylogeny of the planthopper hosts (reconstructed based on sequence data from five genes generated from the same insect specimens from which the bacterial sequences were obtained) was supported by statistical tests of codiversification. Codiversification tests also supported concordance of the Sulcia phylogeny with the phylogeny of the planthopper hosts, as well as concordance of planthopper-associated Vidania and Sulcia phylogenies. Conclusions: Our results indicate that the Betaproteobacterium Vidania is an ancient endosymbiont that infected the common ancestor of Fulgoroidea at least 130 million years ago. Comparison of our findings with the early light-microscopic surveys conducted by Müller suggests that Vidania is Müllers x-symbiont, which he hypothesized to have codiversified with most lineages of planthoppers and with the Sulcia endosymbiont.
AB - Background: Members of the hemipteran suborder Auchenorrhyncha (commonly known as planthoppers, tree- and leafhoppers, spittlebugs, and cicadas) are unusual among insects known to harbor endosymbiotic bacteria in that they are associated with diverse assemblages of bacterial endosymbionts. Early light microscopic surveys of species representing the two major lineages of Auchenorrhyncha (the planthopper superfamily Fulgoroidea; and Cicadomorpha, comprising Membracoidea [tree- and leafhoppers], Cercopoidea [spittlebugs], and Cicadoidea [cicadas]), found that most examined species harbored at least two morphologically distinct bacterial endosymbionts, and some harbored as many as six. Recent investigations using molecular techniques have identified multiple obligate bacterial endosymbionts in Cicadomorpha; however, much less is known about endosymbionts of Fulgoroidea. In this study, we present the initial findings of an ongoing PCR-based survey (sequencing 16S rDNA) of planthopper-associated bacteria to document endosymbionts with a long-term history of codiversification with their fulgoroid hosts. Results: Results of PCR surveys and phylogenetic analyses of 16S rDNA recovered a monophyletic clade of Betaproteobacteria associated with planthoppers; this clade included Vidania fulgoroideae, a recently described bacterium identified in exemplars of the planthopper family Cixiidae. We surveyed 77 planthopper species representing 18 fulgoroid families, and detected Vidania in 40 species (representing 13 families). Further, we detected the Sulcia endosymbiont (identified as an obligate endosymbiont of Auchenorrhyncha in previous studies) in 30 of the 40 species harboring Vidania. Concordance of the Vidania phylogeny with the phylogeny of the planthopper hosts (reconstructed based on sequence data from five genes generated from the same insect specimens from which the bacterial sequences were obtained) was supported by statistical tests of codiversification. Codiversification tests also supported concordance of the Sulcia phylogeny with the phylogeny of the planthopper hosts, as well as concordance of planthopper-associated Vidania and Sulcia phylogenies. Conclusions: Our results indicate that the Betaproteobacterium Vidania is an ancient endosymbiont that infected the common ancestor of Fulgoroidea at least 130 million years ago. Comparison of our findings with the early light-microscopic surveys conducted by Müller suggests that Vidania is Müllers x-symbiont, which he hypothesized to have codiversified with most lineages of planthoppers and with the Sulcia endosymbiont.
UR - http://www.scopus.com/inward/record.url?scp=84862177202&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862177202&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-12-87
DO - 10.1186/1471-2148-12-87
M3 - Article
C2 - 22697166
AN - SCOPUS:84862177202
SN - 1471-2148
VL - 12
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 87
ER -