Ultrafast Faraday spectroscopy in magnetic semiconductor quantum structures

J. J. Baumberg, S. A. Crooker, D. D. Awschalom, Nitin Samarth, H. Luo, J. K. Furdyna

Research output: Contribution to journalArticle

104 Scopus citations

Abstract

We use an optical probe of magnetization to explore the evolution of carrier-spin scattering and magnetic dynamics in quantum-confined geometries. II-VI magnetic heterostructures are studied using femtosecond-resolved Faraday rotation and exhibit both phase (1 ps) and spin scattering (6 ps) in concert with a field-tunable terahertz quantum beating of the total carrier spin. Spin-flip processes experienced by photoexcited carriers as they tunnel through nanometer-thick magnetic barriers produce a magnetic perturbation strongly sensitive to the initial magnetic state and the spin orientation of the carriers. Once these carriers have recombined (70 ps), the magnetic ions relax through completely different channels of significantly slower decay rate (100 ps10 ns). The relaxation characteristics are found to be substantially influenced by exchange coupling between adjacent magnetic ions at low temperatures (T<13 K). These low-dimensional magnetic systems yield a rich array of spin phenomena absent in traditional semiconductor heterostructures.

Original languageEnglish (US)
Pages (from-to)7689-7700
Number of pages12
JournalPhysical Review B
Volume50
Issue number11
DOIs
StatePublished - Jan 1 1994

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Ultrafast Faraday spectroscopy in magnetic semiconductor quantum structures'. Together they form a unique fingerprint.

  • Cite this

    Baumberg, J. J., Crooker, S. A., Awschalom, D. D., Samarth, N., Luo, H., & Furdyna, J. K. (1994). Ultrafast Faraday spectroscopy in magnetic semiconductor quantum structures. Physical Review B, 50(11), 7689-7700. https://doi.org/10.1103/PhysRevB.50.7689