Uncertainty analysis of energy harvesting systems

Reza Madankan, M. Amin Karami, Puneet Singla

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

This paper presents the relation between uncertainty in the excitation and parameters of vibrational energy harvesting systems and their power output. Nonlinear vibrational energy harvesters are very sensitive to the frequency of the base excitation. If the excitation frequency does not match with the resonance frequency of the energy harvester, the power output significantly deteriorates. The mismatch can be due to the inherent changes of the ambient oscillations. The fabrication errors or gradual changes of material properties also result in the mismatch. This paper quantitatively shows the probability density function for the power as a function of the probability densities of the excitation frequency, excitation amplitude, initial deflection of the energy harvester, and design parameters. Recently developed the conjugated unscented transformation methodology is used in conjunction with the principle of maximum entropy to compute the probability distribution for the base response and power. The computed nonlinear density functions are validated against Monte Carlo simulations.

Original languageEnglish (US)
Title of host publication10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846391
DOIs
StatePublished - Jan 1 2014
EventASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014 - Buffalo, United States
Duration: Aug 17 2014Aug 20 2014

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume6

Other

OtherASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
CountryUnited States
CityBuffalo
Period8/17/148/20/14

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Uncertainty analysis of energy harvesting systems'. Together they form a unique fingerprint.

  • Cite this

    Madankan, R., Karami, M. A., & Singla, P. (2014). Uncertainty analysis of energy harvesting systems. In 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (Proceedings of the ASME Design Engineering Technical Conference; Vol. 6). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/DETC201435480