TY - JOUR
T1 - Understanding the characteristics of COVID-19 misinformation communities through graphlet analysis
AU - Ashford, James R.
AU - Turner, Liam D.
AU - Whitaker, Roger M.
AU - Preece, Alun
AU - Felmlee, Diane
N1 - Funding Information:
This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001 . The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments are authorised to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.
Funding Information:
This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments are authorised to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.
Publisher Copyright:
© 2021 The Author(s)
PY - 2022/1
Y1 - 2022/1
N2 - Online social networks serve as a convenient way to connect, share, and promote content with others. As a result, these networks can be used with malicious intent, causing disruption and harm to public debate through the sharing of misinformation. However, automatically identifying such content through its use of natural language is a significant challenge compared to our solution which uses less computational resources, language-agnostic and without the need for complex semantic analysis. Consequently alternative and complementary approaches are highly valuable. In this paper, we assess content that has the potential for misinformation and focus on patterns of user association with online social media communities (subreddits) in the popular Reddit social media platform, and generate networks of behaviour capturing user interaction with different subreddits. We examine these networks using both global and local metrics, in particular noting the presence of induced substructures (graphlets) assessing 7,876,064 posts from 96,634 users. From subreddits identified as having potential for misinformation, we note that the associated networks have strongly defined local features relating to node degree — these are evident both from analysis of dominant graphlets and degree-related global metrics. We find that these local features support high accuracy classification of subreddits that are categorised as having the potential for misinformation. Consequently we observe that induced local substructures of high degree are fundamental metrics for subreddit classification, and support automatic detection capabilities for online misinformation independent from any particular language.
AB - Online social networks serve as a convenient way to connect, share, and promote content with others. As a result, these networks can be used with malicious intent, causing disruption and harm to public debate through the sharing of misinformation. However, automatically identifying such content through its use of natural language is a significant challenge compared to our solution which uses less computational resources, language-agnostic and without the need for complex semantic analysis. Consequently alternative and complementary approaches are highly valuable. In this paper, we assess content that has the potential for misinformation and focus on patterns of user association with online social media communities (subreddits) in the popular Reddit social media platform, and generate networks of behaviour capturing user interaction with different subreddits. We examine these networks using both global and local metrics, in particular noting the presence of induced substructures (graphlets) assessing 7,876,064 posts from 96,634 users. From subreddits identified as having potential for misinformation, we note that the associated networks have strongly defined local features relating to node degree — these are evident both from analysis of dominant graphlets and degree-related global metrics. We find that these local features support high accuracy classification of subreddits that are categorised as having the potential for misinformation. Consequently we observe that induced local substructures of high degree are fundamental metrics for subreddit classification, and support automatic detection capabilities for online misinformation independent from any particular language.
UR - http://www.scopus.com/inward/record.url?scp=85119091975&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119091975&partnerID=8YFLogxK
U2 - 10.1016/j.osnem.2021.100178
DO - 10.1016/j.osnem.2021.100178
M3 - Article
AN - SCOPUS:85119091975
SN - 2468-6964
VL - 27
JO - Online Social Networks and Media
JF - Online Social Networks and Media
M1 - 100178
ER -