Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Deep convolutional neural networks are used to perform underwater target classification in synthetic aperture sonar (SAS) imagery. The deep networks are learned using a massive database of real, measured sonar data collected at sea during different expeditions in various geographical locations. A novel training procedure is developed specially for the data from this new sensor modality in order to augment the amount of training data available for learning and to avoid overfitting. The deep networks learned are employed for several binary classification tasks in which different classes of objects in real sonar data are to be discriminated. The proposed deep approach consistently achieves superior performance to a traditional feature-based classifier that we had relied on previously.

Original languageEnglish (US)
Title of host publication2016 23rd International Conference on Pattern Recognition, ICPR 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2497-2502
Number of pages6
ISBN (Electronic)9781509048472
DOIs
StatePublished - Jan 1 2016
Event23rd International Conference on Pattern Recognition, ICPR 2016 - Cancun, Mexico
Duration: Dec 4 2016Dec 8 2016

Publication series

NameProceedings - International Conference on Pattern Recognition
Volume0
ISSN (Print)1051-4651

Conference

Conference23rd International Conference on Pattern Recognition, ICPR 2016
Country/TerritoryMexico
CityCancun
Period12/4/1612/8/16

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks'. Together they form a unique fingerprint.

Cite this