Unexpected formation of an epoxide-derived multisubstrate adduct inhibitor on the active site of GAR transformylase

S. E. Greasley, T. H. Marsilje, H. Cai, S. Baker, S. J. Benkovic, D. L. Boger, I. A. Wilson

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

Multisubstrate adduct inhibitors (MAI) of glycinamide ribonucleotide transformylase (GAR Tfase), which incorporate key features of the folate cofactor and the Β-GAR substrate, typically exhibit Ki's in the picomolar range. However, these compounds have reduced bioavailability due to the incorporation of a negatively charged phosphate moiety that prevents effective cellular uptake. Thus, a folate analogue that is capable of adduct formation with the substrate on the enzyme active site could lead to a potent GAR Tfase inhibitor that takes advantage of the cellular folate transport systems. We synthesized a dibromide folate analogue, 10-bromo-10-bromomethyl-5,8,10-trideazafolic acid, that was an intermediate designed to assemble with the substrate β-GAR on the enzyme active site. We have now determined the crystal structure of the Escherichia coli GAR Tfase/MAI complex at 1.6 Å resolution to ascertain the nature and mechanism of its time-dependent inhibition. The high-resolution crystal structure clearly revealed the existence of a covalent adduct between the substrate β-GAR and the folate analogue (Ki = 20 μM). However, the electron density map surprisingly indicated a C10 hydroxyl in the adduct rather than a bromide and suggested that the multisubstrate adduct is not formed directly from the dibromide but proceeds via an epoxide. Subsequently, we demonstrated the in situ conversion of the dibromide to the epoxide. Moreover, synthesis of the authentic epoxide confirmed that its inhibitory, time-dependent, and cytotoxic properties are comparable to those of the dibromide. Further, inhibition was strongest when the dibromide or epoxide is preincubated with both enzyme and substrate, indicating that inhibition occurs via the enzyme-dependent formation of the multisubstrate adduct. Thus, the crystal structure revealed the successful formation of an enzyme-assembled multisubstrate adduct and highlighted a potential application for epoxides, and perhaps aziridines, in the design of efficacious GAR Tfase inhibitors.

Original languageEnglish (US)
Pages (from-to)13538-13547
Number of pages10
JournalBiochemistry
Volume40
Issue number45
DOIs
StatePublished - Nov 13 2001

All Science Journal Classification (ASJC) codes

  • Biochemistry

Fingerprint Dive into the research topics of 'Unexpected formation of an epoxide-derived multisubstrate adduct inhibitor on the active site of GAR transformylase'. Together they form a unique fingerprint.

Cite this