Unique effects of energy versus estrogen deficiency on multiple components of bone strength in exercising women

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Summary: Many female athletes are energy and/or estrogen deficient, but the independent effects on bone health have not been isolated. Energy deficiency was detrimental at the tibia while estrogen deficiency was detrimental at the radius. Nutrition must be considered alongside menstrual recovery when addressing compromised bone health in female athletes. Introduction: The purpose of this study was to describe volumetric bone mineral density (vBMD), bone geometry, and estimated bone strength in exercising women (n = 60) grouped according to energy status (energy replete (EnR: n = 30) vs. energy deficient (EnD: n = 30)) and estrogen status (estrogen replete (E2R: n = 33) vs. estrogen deficient (E2D: n = 27)), resulting in four distinct groups: EnR + E2R (n = 17), EnR + E2D (n = 13), EnD + E2R (n = 16), EnD + E2D (n = 14). Methods: Energy status was determined using the ratio of measured to predicted resting energy expenditure (mREE/pREE). Estrogen status was based on self-reported menstrual status confirmed by daily evaluation of urinary estrone-1-glucoronide (E1G), pregnanediol glucuronide (PdG), and luteinizing hormone (LH). Eumenorrheic women were considered E2R, amenorrheic women were E2D, and oligomenorrheic women were categorized based on history of menses in the past year. Bone was assessed using peripheral quantitative computed tomography (pQCT). Results: EnD women exhibited lower total vBMD, trabecular vBMD, cortical area, and BSI at the distal tibia and lower total vBMD, smaller cortical area and cortical thickness, and larger endosteal circumference at the proximal tibia compared to EnR women (p < 0.042). E2D women had lower total and cortical vBMD, larger total and trabecular area, and lower BSI at the distal radius and lower cortical vBMD at the proximal radius compared to E2R women (p < 0.023). Energy and estrogen interacted to affect total and trabecular area at the distal tibia (p < 0.021). Conclusions: Efforts to correct energy deficiency, which in turn may promote reproductive health, are warranted in order to address the unique contributions of energy status versus estrogen status to bone health.

Original languageEnglish (US)
Pages (from-to)1365-1376
Number of pages12
JournalOsteoporosis International
Volume28
Issue number4
DOIs
StatePublished - Apr 1 2017

Fingerprint

Estrogens
Bone Density
Bone and Bones
Tibia
Athletes
Health
Pregnanediol
Menstruation
Estrone
Glucuronides
Reproductive Health
Luteinizing Hormone
Energy Metabolism
Tomography

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism

Cite this

@article{7e96e8a60e9e4b7d9aa639cae2ceb9d7,
title = "Unique effects of energy versus estrogen deficiency on multiple components of bone strength in exercising women",
abstract = "Summary: Many female athletes are energy and/or estrogen deficient, but the independent effects on bone health have not been isolated. Energy deficiency was detrimental at the tibia while estrogen deficiency was detrimental at the radius. Nutrition must be considered alongside menstrual recovery when addressing compromised bone health in female athletes. Introduction: The purpose of this study was to describe volumetric bone mineral density (vBMD), bone geometry, and estimated bone strength in exercising women (n = 60) grouped according to energy status (energy replete (EnR: n = 30) vs. energy deficient (EnD: n = 30)) and estrogen status (estrogen replete (E2R: n = 33) vs. estrogen deficient (E2D: n = 27)), resulting in four distinct groups: EnR + E2R (n = 17), EnR + E2D (n = 13), EnD + E2R (n = 16), EnD + E2D (n = 14). Methods: Energy status was determined using the ratio of measured to predicted resting energy expenditure (mREE/pREE). Estrogen status was based on self-reported menstrual status confirmed by daily evaluation of urinary estrone-1-glucoronide (E1G), pregnanediol glucuronide (PdG), and luteinizing hormone (LH). Eumenorrheic women were considered E2R, amenorrheic women were E2D, and oligomenorrheic women were categorized based on history of menses in the past year. Bone was assessed using peripheral quantitative computed tomography (pQCT). Results: EnD women exhibited lower total vBMD, trabecular vBMD, cortical area, and BSI at the distal tibia and lower total vBMD, smaller cortical area and cortical thickness, and larger endosteal circumference at the proximal tibia compared to EnR women (p < 0.042). E2D women had lower total and cortical vBMD, larger total and trabecular area, and lower BSI at the distal radius and lower cortical vBMD at the proximal radius compared to E2R women (p < 0.023). Energy and estrogen interacted to affect total and trabecular area at the distal tibia (p < 0.021). Conclusions: Efforts to correct energy deficiency, which in turn may promote reproductive health, are warranted in order to address the unique contributions of energy status versus estrogen status to bone health.",
author = "Southmayd, {E. A.} and Mallinson, {Rebecca Jane} and Nancy Williams and Mallinson, {Daniel J.} and {De Souza}, {Mary Jane}",
year = "2017",
month = "4",
day = "1",
doi = "10.1007/s00198-016-3887-x",
language = "English (US)",
volume = "28",
pages = "1365--1376",
journal = "Osteoporosis International",
issn = "0937-941X",
publisher = "Springer London",
number = "4",

}

TY - JOUR

T1 - Unique effects of energy versus estrogen deficiency on multiple components of bone strength in exercising women

AU - Southmayd, E. A.

AU - Mallinson, Rebecca Jane

AU - Williams, Nancy

AU - Mallinson, Daniel J.

AU - De Souza, Mary Jane

PY - 2017/4/1

Y1 - 2017/4/1

N2 - Summary: Many female athletes are energy and/or estrogen deficient, but the independent effects on bone health have not been isolated. Energy deficiency was detrimental at the tibia while estrogen deficiency was detrimental at the radius. Nutrition must be considered alongside menstrual recovery when addressing compromised bone health in female athletes. Introduction: The purpose of this study was to describe volumetric bone mineral density (vBMD), bone geometry, and estimated bone strength in exercising women (n = 60) grouped according to energy status (energy replete (EnR: n = 30) vs. energy deficient (EnD: n = 30)) and estrogen status (estrogen replete (E2R: n = 33) vs. estrogen deficient (E2D: n = 27)), resulting in four distinct groups: EnR + E2R (n = 17), EnR + E2D (n = 13), EnD + E2R (n = 16), EnD + E2D (n = 14). Methods: Energy status was determined using the ratio of measured to predicted resting energy expenditure (mREE/pREE). Estrogen status was based on self-reported menstrual status confirmed by daily evaluation of urinary estrone-1-glucoronide (E1G), pregnanediol glucuronide (PdG), and luteinizing hormone (LH). Eumenorrheic women were considered E2R, amenorrheic women were E2D, and oligomenorrheic women were categorized based on history of menses in the past year. Bone was assessed using peripheral quantitative computed tomography (pQCT). Results: EnD women exhibited lower total vBMD, trabecular vBMD, cortical area, and BSI at the distal tibia and lower total vBMD, smaller cortical area and cortical thickness, and larger endosteal circumference at the proximal tibia compared to EnR women (p < 0.042). E2D women had lower total and cortical vBMD, larger total and trabecular area, and lower BSI at the distal radius and lower cortical vBMD at the proximal radius compared to E2R women (p < 0.023). Energy and estrogen interacted to affect total and trabecular area at the distal tibia (p < 0.021). Conclusions: Efforts to correct energy deficiency, which in turn may promote reproductive health, are warranted in order to address the unique contributions of energy status versus estrogen status to bone health.

AB - Summary: Many female athletes are energy and/or estrogen deficient, but the independent effects on bone health have not been isolated. Energy deficiency was detrimental at the tibia while estrogen deficiency was detrimental at the radius. Nutrition must be considered alongside menstrual recovery when addressing compromised bone health in female athletes. Introduction: The purpose of this study was to describe volumetric bone mineral density (vBMD), bone geometry, and estimated bone strength in exercising women (n = 60) grouped according to energy status (energy replete (EnR: n = 30) vs. energy deficient (EnD: n = 30)) and estrogen status (estrogen replete (E2R: n = 33) vs. estrogen deficient (E2D: n = 27)), resulting in four distinct groups: EnR + E2R (n = 17), EnR + E2D (n = 13), EnD + E2R (n = 16), EnD + E2D (n = 14). Methods: Energy status was determined using the ratio of measured to predicted resting energy expenditure (mREE/pREE). Estrogen status was based on self-reported menstrual status confirmed by daily evaluation of urinary estrone-1-glucoronide (E1G), pregnanediol glucuronide (PdG), and luteinizing hormone (LH). Eumenorrheic women were considered E2R, amenorrheic women were E2D, and oligomenorrheic women were categorized based on history of menses in the past year. Bone was assessed using peripheral quantitative computed tomography (pQCT). Results: EnD women exhibited lower total vBMD, trabecular vBMD, cortical area, and BSI at the distal tibia and lower total vBMD, smaller cortical area and cortical thickness, and larger endosteal circumference at the proximal tibia compared to EnR women (p < 0.042). E2D women had lower total and cortical vBMD, larger total and trabecular area, and lower BSI at the distal radius and lower cortical vBMD at the proximal radius compared to E2R women (p < 0.023). Energy and estrogen interacted to affect total and trabecular area at the distal tibia (p < 0.021). Conclusions: Efforts to correct energy deficiency, which in turn may promote reproductive health, are warranted in order to address the unique contributions of energy status versus estrogen status to bone health.

UR - http://www.scopus.com/inward/record.url?scp=85007449429&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85007449429&partnerID=8YFLogxK

U2 - 10.1007/s00198-016-3887-x

DO - 10.1007/s00198-016-3887-x

M3 - Article

C2 - 28032184

AN - SCOPUS:85007449429

VL - 28

SP - 1365

EP - 1376

JO - Osteoporosis International

JF - Osteoporosis International

SN - 0937-941X

IS - 4

ER -