Unleashing Strain Induced Ferroelectricity in Complex Oxide Thin Films via Precise Stoichiometry Control

Ryan C. Haislmaier, Everett D. Grimley, Michael D. Biegalski, James M. LeBeau, Susan Trolier-McKinstry, Venkatraman Gopalan, Roman Engel-Herbert

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Strain tuning has emerged as a powerful means to enhance properties and to induce otherwise unattainable phenomena in complex oxide films. However, by employing strain alone, the predicted properties sometimes fail to emerge. In this work, the critical role of precise stoichiometry control for realizing strain-induced ferroelectricity in CaTiO3 films is demonstrated. An adsorption controlled growth window is discovered for CaTiO3 films grown by hybrid molecular beam epitaxy, which ensures an excellent control over the Ti:Ca atomic percent ratio of <0.8% in the films. Superior ferroelectric and dielectric properties are found for films grown inside the stoichiometric growth window, yielding maximum polarization, dielectric constant, and paraelectric-to-ferroelectric transition temperatures. Outside this growth window, properties are severely deteriorated and ultimately suppressed by defects in the films. This study exemplifies the important role of precise compositional control for achieving strain-induced properties. Untangling the effects of strain and stoichiometry on functional properties will accelerate both fundamental discoveries yet to be made in the vast materials design space of strained complex oxide films, as well as utilization of strain-stabilized phenomena in future devices.

Original languageEnglish (US)
Pages (from-to)7271-7279
Number of pages9
JournalAdvanced Functional Materials
Volume26
Issue number40
DOIs
StatePublished - Oct 25 2016

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Unleashing Strain Induced Ferroelectricity in Complex Oxide Thin Films via Precise Stoichiometry Control'. Together they form a unique fingerprint.

Cite this