Update

A subscale solid rocket motor for characterization of submerged nozzle erosion

Andrew C. Cortopassi, J. Eric Boyer, Kenneth K. Kuo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Citations (Scopus)

Abstract

Current understanding of physical and chemical processes involved in the erosion of submerged nozzles by highly-aluminized solid propellants is limited. The ability to predict the surface erosion rate of a given carbon-cloth phenolic (CCP) nozzle material is very important for the future design or modification of large solid rocket boosters for space launch applications. Although current erosion codes provide engineering accuracy for nozzle throat erosion rates, calculated rates for the forward surfaces of the submerged nozzle can vary significantly from observed values. The overall objective of this research study under the NASA Constellation University Institutes Project (NASA-CUIP) is to improve the understanding of nozzle erosion and related phenomena. In previous work, the design of a subscale solid rocket motor was performed based upon engineering analysis of the interior ballistic process and a series of CFD simulations of the flow field in both the region of the submerged nozzle and the entire subscale motor. This motor design allows for the use of real-time X-ray radiography with a high-resolution image intensifier system to obtain submerged nozzle erosion data. An update on the design and fabrication of this subscale solid rocket motor is presented in the present work. In addition to this, 3D simulation of the internal flow-field of the rocket motor was performed including the effects of liquid alumina droplets. The modeling of the nozzle surface erosion, coupled with the flow field structure, addresses scientific understanding and characterization of the influence of a liquid layer formed due to deposition of Al2O3/Al droplets on the surface of the converging section of the submerged nozzle. Calculations have been performed which compute the accretion rate of alumina onto the nozzle surface, with accretion rates on the order of 20 kg/m2-s. As a part of the overall study, we examine several physicochemical processes on the nozzle surface due to the presence of this molten liquid layer. Future test results from this newly designed rocket motor will be highly beneficial for model validation as well as attaining in-depth understanding of interactions between the liquid alumina and nozzle materials.

Original languageEnglish (US)
Title of host publication45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
StatePublished - 2009
Event45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit - Denver, CO, United States
Duration: Aug 2 2009Aug 5 2009

Other

Other45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
CountryUnited States
CityDenver, CO
Period8/2/098/5/09

Fingerprint

Rocket engines
rockets
nozzles
erosion
Erosion
Nozzles
aluminum oxide
flow field
liquid
erosion rate
droplet
accretion
engineering
radiography
Flow fields
flow distribution
Alumina
aluminum oxides
model validation
Liquids

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Control and Systems Engineering
  • Space and Planetary Science
  • Energy(all)
  • Electrical and Electronic Engineering
  • Mechanical Engineering

Cite this

Cortopassi, A. C., Boyer, J. E., & Kuo, K. K. (2009). Update: A subscale solid rocket motor for characterization of submerged nozzle erosion. In 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
Cortopassi, Andrew C. ; Boyer, J. Eric ; Kuo, Kenneth K. / Update : A subscale solid rocket motor for characterization of submerged nozzle erosion. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2009.
@inproceedings{15cbe553f9f047019a20119660b1f438,
title = "Update: A subscale solid rocket motor for characterization of submerged nozzle erosion",
abstract = "Current understanding of physical and chemical processes involved in the erosion of submerged nozzles by highly-aluminized solid propellants is limited. The ability to predict the surface erosion rate of a given carbon-cloth phenolic (CCP) nozzle material is very important for the future design or modification of large solid rocket boosters for space launch applications. Although current erosion codes provide engineering accuracy for nozzle throat erosion rates, calculated rates for the forward surfaces of the submerged nozzle can vary significantly from observed values. The overall objective of this research study under the NASA Constellation University Institutes Project (NASA-CUIP) is to improve the understanding of nozzle erosion and related phenomena. In previous work, the design of a subscale solid rocket motor was performed based upon engineering analysis of the interior ballistic process and a series of CFD simulations of the flow field in both the region of the submerged nozzle and the entire subscale motor. This motor design allows for the use of real-time X-ray radiography with a high-resolution image intensifier system to obtain submerged nozzle erosion data. An update on the design and fabrication of this subscale solid rocket motor is presented in the present work. In addition to this, 3D simulation of the internal flow-field of the rocket motor was performed including the effects of liquid alumina droplets. The modeling of the nozzle surface erosion, coupled with the flow field structure, addresses scientific understanding and characterization of the influence of a liquid layer formed due to deposition of Al2O3/Al droplets on the surface of the converging section of the submerged nozzle. Calculations have been performed which compute the accretion rate of alumina onto the nozzle surface, with accretion rates on the order of 20 kg/m2-s. As a part of the overall study, we examine several physicochemical processes on the nozzle surface due to the presence of this molten liquid layer. Future test results from this newly designed rocket motor will be highly beneficial for model validation as well as attaining in-depth understanding of interactions between the liquid alumina and nozzle materials.",
author = "Cortopassi, {Andrew C.} and Boyer, {J. Eric} and Kuo, {Kenneth K.}",
year = "2009",
language = "English (US)",
isbn = "9781563479762",
booktitle = "45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit",

}

Cortopassi, AC, Boyer, JE & Kuo, KK 2009, Update: A subscale solid rocket motor for characterization of submerged nozzle erosion. in 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, CO, United States, 8/2/09.

Update : A subscale solid rocket motor for characterization of submerged nozzle erosion. / Cortopassi, Andrew C.; Boyer, J. Eric; Kuo, Kenneth K.

45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2009.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - Update

T2 - A subscale solid rocket motor for characterization of submerged nozzle erosion

AU - Cortopassi, Andrew C.

AU - Boyer, J. Eric

AU - Kuo, Kenneth K.

PY - 2009

Y1 - 2009

N2 - Current understanding of physical and chemical processes involved in the erosion of submerged nozzles by highly-aluminized solid propellants is limited. The ability to predict the surface erosion rate of a given carbon-cloth phenolic (CCP) nozzle material is very important for the future design or modification of large solid rocket boosters for space launch applications. Although current erosion codes provide engineering accuracy for nozzle throat erosion rates, calculated rates for the forward surfaces of the submerged nozzle can vary significantly from observed values. The overall objective of this research study under the NASA Constellation University Institutes Project (NASA-CUIP) is to improve the understanding of nozzle erosion and related phenomena. In previous work, the design of a subscale solid rocket motor was performed based upon engineering analysis of the interior ballistic process and a series of CFD simulations of the flow field in both the region of the submerged nozzle and the entire subscale motor. This motor design allows for the use of real-time X-ray radiography with a high-resolution image intensifier system to obtain submerged nozzle erosion data. An update on the design and fabrication of this subscale solid rocket motor is presented in the present work. In addition to this, 3D simulation of the internal flow-field of the rocket motor was performed including the effects of liquid alumina droplets. The modeling of the nozzle surface erosion, coupled with the flow field structure, addresses scientific understanding and characterization of the influence of a liquid layer formed due to deposition of Al2O3/Al droplets on the surface of the converging section of the submerged nozzle. Calculations have been performed which compute the accretion rate of alumina onto the nozzle surface, with accretion rates on the order of 20 kg/m2-s. As a part of the overall study, we examine several physicochemical processes on the nozzle surface due to the presence of this molten liquid layer. Future test results from this newly designed rocket motor will be highly beneficial for model validation as well as attaining in-depth understanding of interactions between the liquid alumina and nozzle materials.

AB - Current understanding of physical and chemical processes involved in the erosion of submerged nozzles by highly-aluminized solid propellants is limited. The ability to predict the surface erosion rate of a given carbon-cloth phenolic (CCP) nozzle material is very important for the future design or modification of large solid rocket boosters for space launch applications. Although current erosion codes provide engineering accuracy for nozzle throat erosion rates, calculated rates for the forward surfaces of the submerged nozzle can vary significantly from observed values. The overall objective of this research study under the NASA Constellation University Institutes Project (NASA-CUIP) is to improve the understanding of nozzle erosion and related phenomena. In previous work, the design of a subscale solid rocket motor was performed based upon engineering analysis of the interior ballistic process and a series of CFD simulations of the flow field in both the region of the submerged nozzle and the entire subscale motor. This motor design allows for the use of real-time X-ray radiography with a high-resolution image intensifier system to obtain submerged nozzle erosion data. An update on the design and fabrication of this subscale solid rocket motor is presented in the present work. In addition to this, 3D simulation of the internal flow-field of the rocket motor was performed including the effects of liquid alumina droplets. The modeling of the nozzle surface erosion, coupled with the flow field structure, addresses scientific understanding and characterization of the influence of a liquid layer formed due to deposition of Al2O3/Al droplets on the surface of the converging section of the submerged nozzle. Calculations have been performed which compute the accretion rate of alumina onto the nozzle surface, with accretion rates on the order of 20 kg/m2-s. As a part of the overall study, we examine several physicochemical processes on the nozzle surface due to the presence of this molten liquid layer. Future test results from this newly designed rocket motor will be highly beneficial for model validation as well as attaining in-depth understanding of interactions between the liquid alumina and nozzle materials.

UR - http://www.scopus.com/inward/record.url?scp=77957853870&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77957853870&partnerID=8YFLogxK

M3 - Conference contribution

SN - 9781563479762

BT - 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit

ER -

Cortopassi AC, Boyer JE, Kuo KK. Update: A subscale solid rocket motor for characterization of submerged nozzle erosion. In 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2009