Use of a Novel Diagonal Pump in an In Vitro Neonatal Pulsatile Extracorporeal Life Support Circuit

Alissa Evenson, Shigang Wang, Allen R. Kunselman, Akif Ündar

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

One approach with the potential to improve morbidity and mortality rates following extracorporeal life support (ECLS) is the use of pulsatile perfusion. Currently, no ECLS pumps used in the United States can produce pulsatile flow. The objective of this experiment is to evaluate a novel diagonal pump used in Europe to determine whether it provides physiological pulsatility in a neonatal model. The ECLS circuit consisted of a Medos Deltastream DP3 diagonal pump, a Hilite 800LT polymethylpentene diffusion membrane oxygenator, and arterial/venous tubing. A 300-mL pseudopatient was connected to the circuit using an 8Fr arterial cannula and a 10Fr venous cannula. A clamp maintained constant pressure entering the pseudopatient. Trials (64 total) were conducted in nonpulsatile and pulsatile modes at flow rates of 200mL/min to 800mL/min. Flow and pressure data were collected using a custom-based data acquisition system. The Deltastream DP3 pump was capable of producing an adequate quality of pulsatility. Pulsatile flow produced increased mean arterial pressure, energy equivalent pressure (EEP), and surplus hemodynamic energy (SHE) at all flow rates compared to nonpulsatile flow. Pressure drop across the cannula accounted for the majority of pressure loss in the circuit. The greatest loss of SHE and total hemodynamic energy occurred across the arterial cannula due to its small diameter. The Deltastream DP3 pump produced physiological pulsatile flow without backflow while providing EEP and SHE to our neonatal pseudopatient. Further experiments are necessary to determine the impact of this pulsatile pump in an in vivo model prior to clinical use.

Original languageEnglish (US)
Pages (from-to)E1-E9
JournalArtificial organs
Volume38
Issue number1
DOIs
StatePublished - Jan 2014

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Medicine (miscellaneous)
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Use of a Novel Diagonal Pump in an In Vitro Neonatal Pulsatile Extracorporeal Life Support Circuit'. Together they form a unique fingerprint.

Cite this