Vagally mediated, nonparacrine effects of cholecystokinin-8s on rat pancreatic exocrine secretion

Eddy Viard, Zhongling Zheng, Shuxia Wan, R. Alberto Travagli

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Cholecystokinin (CCK) has been proposed to act in a vagally dependent manner to increase pancreatic exocrine secretion via actions exclusively at peripheral vagal afferent fibers. Recent evidence, however, suggests the CCK-8s may also affect brain stem structures directly. We used an in vivo preparation with the aims of 1) investigating whether the actions of intraduodenal casein perfusion to increase pancreatic protein secretion also involved direct actions of CCK at the level of the brain stem and, if so, 2) determining whether, in the absence of vagal afferent inputs, CCK-8s applied to the dorsal vagal complex (DVC) can also modulate pancreatic exocrine secretion (PES). Sprague-Dawley rats (250-400 g) were anesthetized and the common bile-pancreatic duct was cannulated to collect PES. Both vagal deafferentation and pretreatment with the CCK-A antagonist lorglumide on the floor of the fourth ventricle decreased the casein-induced increase in PES output. CCK-8s microinjection (450 pmol) in the DVC significantly increased PES; the increase was larger when CCK-8s was injected in the left side of the DVC. Protein secretion returned to baseline levels within 30 min. Microinjection of CCK-8s increased PES (although to a lower extent) also in rats that underwent complete vagal deafferentation. These data indicate that, as well as activating peripheral vagal afferents, CCK-8s increases pancreatic exocrine secretion via an action in the DVC. Our data suggest that the CCK-8s-induced increases in PES are due mainly to a paracrine effect of CCK; however, a relevant portion of the effects of CCK is due also to an effect of the peptide on brain stem vagal circuits.

Original languageEnglish (US)
Pages (from-to)G493-G500
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume293
Issue number2
DOIs
StatePublished - Aug 2007

All Science Journal Classification (ASJC) codes

  • Physiology
  • Hepatology
  • Gastroenterology
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Vagally mediated, nonparacrine effects of cholecystokinin-8s on rat pancreatic exocrine secretion'. Together they form a unique fingerprint.

Cite this