Abstract

Free radicals in tobacco smoke are thought to be an important cause of smoking-induced diseases, yet the variation in free radical exposure to smokers from different brands of commercially available cigarettes is unknown. We measured the levels of highly reactive gas-phase and stable particulate-phase radicals in mainstream cigarette smoke by electron paramagnetic resonance (EPR) spectroscopy with and without the spin-trapping agent phenyl-N-tert-butylnitrone (PBN), respectively, in 27 popular US cigarettes and the 3R4F research cigarette, machine-smoked according to the FTC protocol. We find a 12-fold variation in the levels of gas-phase radicals (1.2 to 14 nmol per cigarette) and a 2-fold variation in the amounts of particulate-phase radicals (44 to 96 pmol per cigarette) across the range of cigarette brands. Gas and particulate-phase radicals were highly correlated across brands (ρ = 0.62, p < 0.001). Both radicals were correlated with TPM (gas-phase: ρ = 0.38, p = 0.04; particulate-phase: ρ = 0.44, p = 0.02) and ventilation (gas- and tar-phase: ρ = −0.58, p = 0.001), with ventilation explaining nearly 30% of the variation in radical levels across brands. Overall, our findings of significant brand variation in free radical delivery under standardized machine-smoked conditions suggest that the use of certain brands of cigarettes may be associated with greater levels of oxidative stress in smokers.

Original languageEnglish (US)
Pages (from-to)1038-1045
Number of pages8
JournalChemical research in toxicology
Volume30
Issue number4
DOIs
StatePublished - Apr 17 2017

All Science Journal Classification (ASJC) codes

  • Toxicology

Fingerprint Dive into the research topics of 'Variation in Free Radical Yields from U.S. Marketed Cigarettes'. Together they form a unique fingerprint.

Cite this