Vasoactive intestinal polypeptide neurons in fetal cortical homografts to adult rat spinal cord

James Connor, Jerald J. Bernstein

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Transplants of central nervous system to adult spinal cords are considered as potential aids in regeneration of the spinal cord and/or recovery of function after injury. The organization and development of the implant are important issues in seeking the potential for a transplant and host to become functionally integrated. This study uses embryonic cerebral cortex transplanted into the spinal cord of adult rats (T6) and examined the development and organization of the transplant with an antibody to vasoactive intestinal polypeptide (VIP). The cell bodies of VIP neurons are in the implants at 30 days postimplantation, but few of the somata have processes. By 45 days postimplantation, VIP neurons in the implant have dendrites and axons and are clearly recognizable as cortical bipolar cells which are not normally present in the thoracic spinal cord. These data show that neurons in embryonic cerebral cortical implants into the spinal cord elaborate the appropriate biochemical and morphological constituents in spite of the ectopic location. However, the cell processes develop at a slower than normal pace. Morphological interaction between the host spinal cord and the implant can be demonstrated possibly as early as 45 days postimplantation and clearly at 6 months following the implant. Thus, further examination of cerebral cortical implants as a potential aid in allevation of paraplegia subsequent to spinal cord injury is warranted.

Original languageEnglish (US)
Pages (from-to)214-221
Number of pages8
JournalBrain research
Volume367
Issue number1-2
DOIs
StatePublished - Mar 5 1986

Fingerprint

Vasoactive Intestinal Peptide
Allografts
Spinal Cord
Neurons
Transplants
Spinal Cord Regeneration
Paraplegia
Recovery of Function
Carisoprodol
Dendrites
Spinal Cord Injuries
Cerebral Cortex
Axons
Thorax
Central Nervous System
Antibodies
Wounds and Injuries

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Molecular Biology
  • Clinical Neurology
  • Developmental Biology

Cite this

@article{41e7fa3615244001ad391039aceff39c,
title = "Vasoactive intestinal polypeptide neurons in fetal cortical homografts to adult rat spinal cord",
abstract = "Transplants of central nervous system to adult spinal cords are considered as potential aids in regeneration of the spinal cord and/or recovery of function after injury. The organization and development of the implant are important issues in seeking the potential for a transplant and host to become functionally integrated. This study uses embryonic cerebral cortex transplanted into the spinal cord of adult rats (T6) and examined the development and organization of the transplant with an antibody to vasoactive intestinal polypeptide (VIP). The cell bodies of VIP neurons are in the implants at 30 days postimplantation, but few of the somata have processes. By 45 days postimplantation, VIP neurons in the implant have dendrites and axons and are clearly recognizable as cortical bipolar cells which are not normally present in the thoracic spinal cord. These data show that neurons in embryonic cerebral cortical implants into the spinal cord elaborate the appropriate biochemical and morphological constituents in spite of the ectopic location. However, the cell processes develop at a slower than normal pace. Morphological interaction between the host spinal cord and the implant can be demonstrated possibly as early as 45 days postimplantation and clearly at 6 months following the implant. Thus, further examination of cerebral cortical implants as a potential aid in allevation of paraplegia subsequent to spinal cord injury is warranted.",
author = "James Connor and Bernstein, {Jerald J.}",
year = "1986",
month = "3",
day = "5",
doi = "10.1016/0006-8993(86)91594-5",
language = "English (US)",
volume = "367",
pages = "214--221",
journal = "Brain Research",
issn = "0006-8993",
publisher = "Elsevier",
number = "1-2",

}

Vasoactive intestinal polypeptide neurons in fetal cortical homografts to adult rat spinal cord. / Connor, James; Bernstein, Jerald J.

In: Brain research, Vol. 367, No. 1-2, 05.03.1986, p. 214-221.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Vasoactive intestinal polypeptide neurons in fetal cortical homografts to adult rat spinal cord

AU - Connor, James

AU - Bernstein, Jerald J.

PY - 1986/3/5

Y1 - 1986/3/5

N2 - Transplants of central nervous system to adult spinal cords are considered as potential aids in regeneration of the spinal cord and/or recovery of function after injury. The organization and development of the implant are important issues in seeking the potential for a transplant and host to become functionally integrated. This study uses embryonic cerebral cortex transplanted into the spinal cord of adult rats (T6) and examined the development and organization of the transplant with an antibody to vasoactive intestinal polypeptide (VIP). The cell bodies of VIP neurons are in the implants at 30 days postimplantation, but few of the somata have processes. By 45 days postimplantation, VIP neurons in the implant have dendrites and axons and are clearly recognizable as cortical bipolar cells which are not normally present in the thoracic spinal cord. These data show that neurons in embryonic cerebral cortical implants into the spinal cord elaborate the appropriate biochemical and morphological constituents in spite of the ectopic location. However, the cell processes develop at a slower than normal pace. Morphological interaction between the host spinal cord and the implant can be demonstrated possibly as early as 45 days postimplantation and clearly at 6 months following the implant. Thus, further examination of cerebral cortical implants as a potential aid in allevation of paraplegia subsequent to spinal cord injury is warranted.

AB - Transplants of central nervous system to adult spinal cords are considered as potential aids in regeneration of the spinal cord and/or recovery of function after injury. The organization and development of the implant are important issues in seeking the potential for a transplant and host to become functionally integrated. This study uses embryonic cerebral cortex transplanted into the spinal cord of adult rats (T6) and examined the development and organization of the transplant with an antibody to vasoactive intestinal polypeptide (VIP). The cell bodies of VIP neurons are in the implants at 30 days postimplantation, but few of the somata have processes. By 45 days postimplantation, VIP neurons in the implant have dendrites and axons and are clearly recognizable as cortical bipolar cells which are not normally present in the thoracic spinal cord. These data show that neurons in embryonic cerebral cortical implants into the spinal cord elaborate the appropriate biochemical and morphological constituents in spite of the ectopic location. However, the cell processes develop at a slower than normal pace. Morphological interaction between the host spinal cord and the implant can be demonstrated possibly as early as 45 days postimplantation and clearly at 6 months following the implant. Thus, further examination of cerebral cortical implants as a potential aid in allevation of paraplegia subsequent to spinal cord injury is warranted.

UR - http://www.scopus.com/inward/record.url?scp=0022492331&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022492331&partnerID=8YFLogxK

U2 - 10.1016/0006-8993(86)91594-5

DO - 10.1016/0006-8993(86)91594-5

M3 - Article

VL - 367

SP - 214

EP - 221

JO - Brain Research

JF - Brain Research

SN - 0006-8993

IS - 1-2

ER -