Vegetation response to glacial-interglacial climate variability near Lake Malawi in the southern African tropics

Kristina R.M. Beuning, Kurt A. Zimmerman, Sarah Ivory, Andrew S. Cohen

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

Pollen records from Lake Malawi, Africa spanning the last 135kyr show substantial and abrupt vegetation response to multiple episodes of extreme aridity between 135 and 75ka. Peaks in both the relative abundance and total production of Podocarpus pollen define the first two of these drought episodes. From 135 to 127 and again from 117 to 105kyr BP, Podocarpus percentages remain above 16% with peak values as high as 38% indicating a period marked by a cool climate resulting in expansion of montane forest taxa to lower elevations. Marine palynological records from the Angola Margin and Congo Fan show similar peak Podocarpus percentages at this time (oxygen isotope stage 5d) indicating a similar climate across the African continent at this latitude. From 105 to 90ka, continuing drought resulted in total pollen accumulation rates in Lake Malawi to fall to less than 300grains/cm2/yr of predominately grass pollen. This episode in African history was severe enough to cause the disappearance of pteridophytes and forest taxa such as Uapaca and Brachystegia as well as montane taxa (Podocarpus, Olea spp. and Ericaceae) within the pollen source area of Lake Malawi. These taxa all remain nearly absent from the surrounding vegetation for the next 18,000years. The resultant semi-desert vegetation would have been inhospitable for early humans living within or traveling through the Lake Malawi region. Increasing moisture following these arid intervals allowed expansion, creation and maintenance of a more diverse landscape vegetation mosaic around Lake Malawi including Zambezian miombo woodland, humid evergreen woodland and afromontane forests. The relative abundance of each fluctuated in response to either cooling (i.e. afromontane expansion from 60 to 56ka) or moisture balance (i.e. increasing humid evergreen woodland between 75 and 65ka). Notably there was no significant change in vegetation composition during the Last Glacial Maximum (LGM) (30-15ka) as compared to the previous 20,000years.

Original languageEnglish (US)
Pages (from-to)81-92
Number of pages12
JournalPalaeogeography, Palaeoclimatology, Palaeoecology
Volume303
Issue number1-4
DOIs
StatePublished - Apr 1 2011

Fingerprint

Lake Malawi
Podocarpus
interglacial
tropics
pollen
climate
vegetation
lake
woodlands
woodland
relative abundance
Uapaca
Brachystegia
drought
moisture
Olea
marine record
Angola
Ericaceae
Republic of the Congo

All Science Journal Classification (ASJC) codes

  • Oceanography
  • Ecology, Evolution, Behavior and Systematics
  • Earth-Surface Processes
  • Palaeontology

Cite this

@article{2ec1defa50954cbd914512dbfc758124,
title = "Vegetation response to glacial-interglacial climate variability near Lake Malawi in the southern African tropics",
abstract = "Pollen records from Lake Malawi, Africa spanning the last 135kyr show substantial and abrupt vegetation response to multiple episodes of extreme aridity between 135 and 75ka. Peaks in both the relative abundance and total production of Podocarpus pollen define the first two of these drought episodes. From 135 to 127 and again from 117 to 105kyr BP, Podocarpus percentages remain above 16{\%} with peak values as high as 38{\%} indicating a period marked by a cool climate resulting in expansion of montane forest taxa to lower elevations. Marine palynological records from the Angola Margin and Congo Fan show similar peak Podocarpus percentages at this time (oxygen isotope stage 5d) indicating a similar climate across the African continent at this latitude. From 105 to 90ka, continuing drought resulted in total pollen accumulation rates in Lake Malawi to fall to less than 300grains/cm2/yr of predominately grass pollen. This episode in African history was severe enough to cause the disappearance of pteridophytes and forest taxa such as Uapaca and Brachystegia as well as montane taxa (Podocarpus, Olea spp. and Ericaceae) within the pollen source area of Lake Malawi. These taxa all remain nearly absent from the surrounding vegetation for the next 18,000years. The resultant semi-desert vegetation would have been inhospitable for early humans living within or traveling through the Lake Malawi region. Increasing moisture following these arid intervals allowed expansion, creation and maintenance of a more diverse landscape vegetation mosaic around Lake Malawi including Zambezian miombo woodland, humid evergreen woodland and afromontane forests. The relative abundance of each fluctuated in response to either cooling (i.e. afromontane expansion from 60 to 56ka) or moisture balance (i.e. increasing humid evergreen woodland between 75 and 65ka). Notably there was no significant change in vegetation composition during the Last Glacial Maximum (LGM) (30-15ka) as compared to the previous 20,000years.",
author = "Beuning, {Kristina R.M.} and Zimmerman, {Kurt A.} and Sarah Ivory and Cohen, {Andrew S.}",
year = "2011",
month = "4",
day = "1",
doi = "10.1016/j.palaeo.2010.01.025",
language = "English (US)",
volume = "303",
pages = "81--92",
journal = "Palaeogeography, Palaeoclimatology, Palaeoecology",
issn = "0031-0182",
publisher = "Elsevier",
number = "1-4",

}

Vegetation response to glacial-interglacial climate variability near Lake Malawi in the southern African tropics. / Beuning, Kristina R.M.; Zimmerman, Kurt A.; Ivory, Sarah; Cohen, Andrew S.

In: Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 303, No. 1-4, 01.04.2011, p. 81-92.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Vegetation response to glacial-interglacial climate variability near Lake Malawi in the southern African tropics

AU - Beuning, Kristina R.M.

AU - Zimmerman, Kurt A.

AU - Ivory, Sarah

AU - Cohen, Andrew S.

PY - 2011/4/1

Y1 - 2011/4/1

N2 - Pollen records from Lake Malawi, Africa spanning the last 135kyr show substantial and abrupt vegetation response to multiple episodes of extreme aridity between 135 and 75ka. Peaks in both the relative abundance and total production of Podocarpus pollen define the first two of these drought episodes. From 135 to 127 and again from 117 to 105kyr BP, Podocarpus percentages remain above 16% with peak values as high as 38% indicating a period marked by a cool climate resulting in expansion of montane forest taxa to lower elevations. Marine palynological records from the Angola Margin and Congo Fan show similar peak Podocarpus percentages at this time (oxygen isotope stage 5d) indicating a similar climate across the African continent at this latitude. From 105 to 90ka, continuing drought resulted in total pollen accumulation rates in Lake Malawi to fall to less than 300grains/cm2/yr of predominately grass pollen. This episode in African history was severe enough to cause the disappearance of pteridophytes and forest taxa such as Uapaca and Brachystegia as well as montane taxa (Podocarpus, Olea spp. and Ericaceae) within the pollen source area of Lake Malawi. These taxa all remain nearly absent from the surrounding vegetation for the next 18,000years. The resultant semi-desert vegetation would have been inhospitable for early humans living within or traveling through the Lake Malawi region. Increasing moisture following these arid intervals allowed expansion, creation and maintenance of a more diverse landscape vegetation mosaic around Lake Malawi including Zambezian miombo woodland, humid evergreen woodland and afromontane forests. The relative abundance of each fluctuated in response to either cooling (i.e. afromontane expansion from 60 to 56ka) or moisture balance (i.e. increasing humid evergreen woodland between 75 and 65ka). Notably there was no significant change in vegetation composition during the Last Glacial Maximum (LGM) (30-15ka) as compared to the previous 20,000years.

AB - Pollen records from Lake Malawi, Africa spanning the last 135kyr show substantial and abrupt vegetation response to multiple episodes of extreme aridity between 135 and 75ka. Peaks in both the relative abundance and total production of Podocarpus pollen define the first two of these drought episodes. From 135 to 127 and again from 117 to 105kyr BP, Podocarpus percentages remain above 16% with peak values as high as 38% indicating a period marked by a cool climate resulting in expansion of montane forest taxa to lower elevations. Marine palynological records from the Angola Margin and Congo Fan show similar peak Podocarpus percentages at this time (oxygen isotope stage 5d) indicating a similar climate across the African continent at this latitude. From 105 to 90ka, continuing drought resulted in total pollen accumulation rates in Lake Malawi to fall to less than 300grains/cm2/yr of predominately grass pollen. This episode in African history was severe enough to cause the disappearance of pteridophytes and forest taxa such as Uapaca and Brachystegia as well as montane taxa (Podocarpus, Olea spp. and Ericaceae) within the pollen source area of Lake Malawi. These taxa all remain nearly absent from the surrounding vegetation for the next 18,000years. The resultant semi-desert vegetation would have been inhospitable for early humans living within or traveling through the Lake Malawi region. Increasing moisture following these arid intervals allowed expansion, creation and maintenance of a more diverse landscape vegetation mosaic around Lake Malawi including Zambezian miombo woodland, humid evergreen woodland and afromontane forests. The relative abundance of each fluctuated in response to either cooling (i.e. afromontane expansion from 60 to 56ka) or moisture balance (i.e. increasing humid evergreen woodland between 75 and 65ka). Notably there was no significant change in vegetation composition during the Last Glacial Maximum (LGM) (30-15ka) as compared to the previous 20,000years.

UR - http://www.scopus.com/inward/record.url?scp=79953146393&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79953146393&partnerID=8YFLogxK

U2 - 10.1016/j.palaeo.2010.01.025

DO - 10.1016/j.palaeo.2010.01.025

M3 - Article

VL - 303

SP - 81

EP - 92

JO - Palaeogeography, Palaeoclimatology, Palaeoecology

JF - Palaeogeography, Palaeoclimatology, Palaeoecology

SN - 0031-0182

IS - 1-4

ER -