Vid24p, a novel protein localized to the fructose-1,6-bisphosphatase- containing vesicles, regulates targeting of fructose-1,6-bisphosphatase from the vesicles to the vacuole for degradation

Meng Chieh Chiang, Hui Ling Chiang

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

Glucose regulates the degradation of the key gluconeogenic enzyme, fructose-1,6-bisphosphatase (FBPase), in Saccharomyces cerevisiae. FBPase is targeted from the cytosol to a novel type of vesicle, and then to the vacuole for degradation when yeast cells are transferred from medium containing poor carbon sources to fresh glucose. To identify proteins involved in the FBPase degradation pathway, we cloned our first VID (vacuolar import and degradation) gene. The VID24 gene was identified by complementation of the FBPase degradation defect of the vid24-1 mutant. Vid24p is a novel protein of 41 kD and is synthesized in response to glucose. Vid24p is localized to the FBPase-containing vesicles as a peripheral membrane protein. In the absence of functional Vid24p, FBPase accumulates in the vesicles and fails to move to the vacuole, suggesting that Vid24p regulates FBPase targeting from the vesicles to the vacuole. FBPase sequestration into the vesicles is not affected in the vid24-1 mutant, indicating that Vid24p acts after FBPase sequestration into the vesicles has occurred. Vid24p is the first protein identified that marks the FBPase-containing vesicles and plays a critical role in delivering FBPase from the vesicles to the vacuole for degradation.

Original languageEnglish (US)
Pages (from-to)1347-1356
Number of pages10
JournalJournal of Cell Biology
Volume140
Issue number6
DOIs
StatePublished - Mar 23 1998

All Science Journal Classification (ASJC) codes

  • Cell Biology

Fingerprint Dive into the research topics of 'Vid24p, a novel protein localized to the fructose-1,6-bisphosphatase- containing vesicles, regulates targeting of fructose-1,6-bisphosphatase from the vesicles to the vacuole for degradation'. Together they form a unique fingerprint.

Cite this