Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application

R. B. Alley, C. A. Shuman, D. A. Meese, A. J. Gow, K. C. Taylor, K. M. Cuffey, J. J. Fitzpatrick, P. M. Grootes, G. A. Zielinski, M. Ram, G. Spinelli, B. Elder

Research output: Contribution to journalArticlepeer-review

184 Citations (SciVal)

Abstract

Annual layers are visible in the Greenland Ice Sheet Project 2 ice core from central Greenland, allowing rapid dating of the core. Changes in bubble and grain structure caused by near-surface, primarily summertime formation of hoar complexes provide the main visible annual marker in the Holocene, and changes in "cloudiness" of the ice correlated with dustiness mark Wisconsinan annual cycles; both markers are evident and have been intercalibrated in early Holocene ice. Layer counts are reproducible between different workers and for one worker at different times, with 1% error over century-length times in the Holocene. Reproducibility is typically 5% in Wisconsinan ice-age ice and decreases with increasing age and depth. Cumulative ages from visible stratigraphy are not significantly different from independent ages of prominent events for ice older than the historical record and younger than approximately 50,000 years. Visible observations are not greatly degraded by "brittle ice" or many other core-quality problems, allowing construction of long, consistently sampled time series. High accuracy requires careful study of the core by dedicated observers.

Original languageEnglish (US)
Pages (from-to)26367-26381
Number of pages15
JournalJournal of Geophysical Research: Oceans
Volume102
Issue numberC12
DOIs
StatePublished - Nov 30 1997

All Science Journal Classification (ASJC) codes

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Oceanography
  • Earth and Planetary Sciences(all)
  • Environmental Science(all)

Fingerprint

Dive into the research topics of 'Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application'. Together they form a unique fingerprint.

Cite this