Water chemistry sensitivity on fibrous debris bypass through a containment sump strainer

Saya Lee, Yassin A. Hassan, Rodolfo Vaghetto, Suhaeb Abdulsattar, Matthew Kappes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Fibrous debris generated from insulation materials during a Loss of Coolant Accident (LOCA) might be transported to the containment sump strainer. Once the fibrous debris reaches the sump strainer, it might accumulate on the strainer causing loss of Net Positive Suction Head (NPSH), called the upstream effect, or it might penetrate through the strainer becoming a source of clogging of flow channel in the core (in-vessel effect). This is the main idea of the Generic Safety Issue (GSI) 191 initiated by the U.S. Nuclear Regulatory Commission (U.S.NRC). In this study, the authors focused on the quantity of the fibrous debris bypass through a containment sump strainer which eventually might cause the in-vessel effect. In order to produce the fibrous debris, a method suggested by the Nuclear Energy Institute (NEI) was applied to one-side-baked NUKON fiberglass insulation materials. The quantity and characteristics of debris penetrating through the strainer may be affected by the properties of water such as pH and electrical conductivity (EC). Total quantity of the debris bypass for a certain period was measured and the effects of the water chemistry were observed. At higher pH and lower EC more fibrous debris penetrated the strainer.

Original languageEnglish (US)
Title of host publicationThermal Hydraulics
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791845912
DOIs
StatePublished - 2014
Event2014 22nd International Conference on Nuclear Engineering, ICONE 2014 - Prague, Czech Republic
Duration: Jul 7 2014Jul 11 2014

Publication series

NameInternational Conference on Nuclear Engineering, Proceedings, ICONE
Volume2B

Conference

Conference2014 22nd International Conference on Nuclear Engineering, ICONE 2014
CountryCzech Republic
CityPrague
Period7/7/147/11/14

All Science Journal Classification (ASJC) codes

  • Nuclear Energy and Engineering

Fingerprint Dive into the research topics of 'Water chemistry sensitivity on fibrous debris bypass through a containment sump strainer'. Together they form a unique fingerprint.

Cite this