Weak supervision for fake news detection via reinforcement learning

Yaqing Wang, Weifeng Yang, Fenglong Ma, Jin Xu, Bin Zhong, Qiang Deng, Jing Gao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Today social media has become the primary source for news. Via social media platforms, fake news travel at unprecedented speeds, reach global audiences and put users and communities at great risk. Therefore, it is extremely important to detect fake news as early as possible. Recently, deep learning based approaches have shown improved performance in fake news detection. However, the training of such models requires a large amount of labeled data, but manual annotation is time-consuming and expensive. Moreover, due to the dynamic nature of news, annotated samples may become outdated quickly and cannot represent the news articles on newly emerged events. Therefore, how to obtain fresh and high-quality labeled samples is the major challenge in employing deep learning models for fake news detection. In order to tackle this challenge, we propose a reinforced weakly-supervised fake news detection framework, i.e., WeFEND, which can leverage users’ reports as weak supervision to enlarge the amount of training data for fake news detection. The proposed framework consists of three main components: the annotator, the reinforced selector and the fake news detector. The annotator can automatically assign weak labels for unlabeled news based on users’ reports. The reinforced selector using reinforcement learning techniques chooses high-quality samples from the weakly labeled data and filters out those low-quality ones that may degrade the detector’s prediction performance. The fake news detector aims to identify fake news based on the news content. We tested the proposed framework on a large collection of news articles published via WeChat official accounts and associated user reports. Extensive experiments on this dataset show that the proposed WeFEND model achieves the best performance compared with the state-of-the-art methods.

Original languageEnglish (US)
Title of host publicationAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PublisherAAAI press
Pages516-523
Number of pages8
ISBN (Electronic)9781577358350
StatePublished - 2020
Event34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States
Duration: Feb 7 2020Feb 12 2020

Publication series

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence

Conference

Conference34th AAAI Conference on Artificial Intelligence, AAAI 2020
CountryUnited States
CityNew York
Period2/7/202/12/20

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Weak supervision for fake news detection via reinforcement learning'. Together they form a unique fingerprint.

Cite this