TY - JOUR

T1 - Wilson lines in the MHV action

AU - Kotko, P.

AU - Stasto, A. M.

N1 - Funding Information:
Open Access, ©c The Authors. Article funded by SCOAP3.
Publisher Copyright:
© 2017, The Author(s).

PY - 2017/9/1

Y1 - 2017/9/1

N2 - The MHV action is the Yang-Mills action quantized on the light-front, where the two explicit physical gluonic degrees of freedom have been canonically transformed to a new set of fields. This transformation leads to the action with vertices being off-shell continuations of the MHV amplitudes. We show that the solution to the field transformation expressing one of the new fields in terms of the Yang-Mills field is a certain type of the Wilson line. More precisely, it is a straight infinite gauge link with a slope extending to the light-cone minus and the transverse direction. One of the consequences of that fact is that certain MHV vertices reduced partially on-shell are gauge invariant — a fact discovered before using conventional light-front perturbation theory. We also analyze the diagrammatic content of the field transformations leading to the MHV action. We found that the diagrams for the solution to the transformation (given by the Wilson line) and its inverse differ only by light-front energy denominators. Further., we investigate the coordinate space version of the inverse solution to the one given by the Wilson line. We find an explicit expression given by a power series in fields. We also give a geometric interpretation to it by means of a specially defined vector field. Finally., we discuss the fact that the Wilson line solution to the transformation is directly related to the all-like helicity gluon wave function, while the inverse functional is a generating functional for solutions of self-dual Yang-Mills equations.

AB - The MHV action is the Yang-Mills action quantized on the light-front, where the two explicit physical gluonic degrees of freedom have been canonically transformed to a new set of fields. This transformation leads to the action with vertices being off-shell continuations of the MHV amplitudes. We show that the solution to the field transformation expressing one of the new fields in terms of the Yang-Mills field is a certain type of the Wilson line. More precisely, it is a straight infinite gauge link with a slope extending to the light-cone minus and the transverse direction. One of the consequences of that fact is that certain MHV vertices reduced partially on-shell are gauge invariant — a fact discovered before using conventional light-front perturbation theory. We also analyze the diagrammatic content of the field transformations leading to the MHV action. We found that the diagrams for the solution to the transformation (given by the Wilson line) and its inverse differ only by light-front energy denominators. Further., we investigate the coordinate space version of the inverse solution to the one given by the Wilson line. We find an explicit expression given by a power series in fields. We also give a geometric interpretation to it by means of a specially defined vector field. Finally., we discuss the fact that the Wilson line solution to the transformation is directly related to the all-like helicity gluon wave function, while the inverse functional is a generating functional for solutions of self-dual Yang-Mills equations.

UR - http://www.scopus.com/inward/record.url?scp=85029583084&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85029583084&partnerID=8YFLogxK

U2 - 10.1007/JHEP09(2017)047

DO - 10.1007/JHEP09(2017)047

M3 - Article

AN - SCOPUS:85029583084

VL - 2017

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1126-6708

IS - 9

M1 - 47

ER -