X-ray emission from PSR J1809-1917 and its pulsar wind nebula, possibly associated with the TeV Gamma-ray source HESS J1809-193

O. Kargaltsev, G. G. Pavlov

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

We detected the 50 kyr old pulsar J1809-1917, and resolved its pulsar wind nebula (PWN) with the Chandra X-Ray Observatory. The pulsar spectrum fits a power-law+blackbody (PL+BB) model, with a photon index Γpsr = 1.2 ±0.6 and T ≈2 MK for nH = 0.7 × 1022 cm-2. At a distance of 3.5 kpc, the luminosities of the PL and BB components are (4 ±1) × 1031 ergs s-1 (in 0.5-8 keV) and ∼1 × 1032 ergs s-1 (bolometric), respectively. The bright inner PWN component of a 3″ × 12″ size is elongated in the north-south direction (with the pulsar close to its south end) and immersed in a larger (20″ × 40″), similarly elongated outer PWN component. The PWN shape can be explained by the ram pressure confinement of the pulsar wind due to the supersonic motion of the pulsar. The PWN spectrum fits an absorbed PL model with nH ≈ 0.7 × 1022 cm-2, Γpwn = 1.4 ±0.1, and a 0.5-8 keV luminosity of ≈4× 1032 ergs s-1. The compact PWN is surrounded by a large-scale (≈4′ × 4′) emission, more extended southward of the pulsar, i.e., in the direction of the alleged pulsar motion. To explain the extended X-ray emission ahead of the moving pulsar, one has to invoke strong intrinsic anisotropy of the pulsar wind, or assume that this emission comes from a relic PWN swept by the reverse SNR shock. The extension of the large-scale X-ray emission toward the center of the unidentified TeV source HESS J1809-193 suggests an association between this source and J1809-1917.An alternative source of relativistic electrons powering HESS J1809-193 might be the serendipitously discovered X-ray source CXOU J180940.7-192544. In addition to the cosmic microwave background radiation or starlight background, the seed photons for Compton up-scattering to TeV energies might be supplied by bright infrared emission from molecular/dust clouds seen within HESS J1809-193.

Original languageEnglish (US)
Pages (from-to)655-667
Number of pages13
JournalAstrophysical Journal
Volume670
Issue number1
DOIs
StatePublished - Nov 20 2007

Fingerprint

nebulae
pulsars
x rays
erg
luminosity
power law
anisotropy
observatory
scattering
cosmic microwave background radiation
dust
ram
seed
electron
photons
seeds
observatories

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

@article{7895d088f48142d5bde9b7f36767e796,
title = "X-ray emission from PSR J1809-1917 and its pulsar wind nebula, possibly associated with the TeV Gamma-ray source HESS J1809-193",
abstract = "We detected the 50 kyr old pulsar J1809-1917, and resolved its pulsar wind nebula (PWN) with the Chandra X-Ray Observatory. The pulsar spectrum fits a power-law+blackbody (PL+BB) model, with a photon index Γpsr = 1.2 ±0.6 and T ≈2 MK for nH = 0.7 × 1022 cm-2. At a distance of 3.5 kpc, the luminosities of the PL and BB components are (4 ±1) × 1031 ergs s-1 (in 0.5-8 keV) and ∼1 × 1032 ergs s-1 (bolometric), respectively. The bright inner PWN component of a 3″ × 12″ size is elongated in the north-south direction (with the pulsar close to its south end) and immersed in a larger (20″ × 40″), similarly elongated outer PWN component. The PWN shape can be explained by the ram pressure confinement of the pulsar wind due to the supersonic motion of the pulsar. The PWN spectrum fits an absorbed PL model with nH ≈ 0.7 × 1022 cm-2, Γpwn = 1.4 ±0.1, and a 0.5-8 keV luminosity of ≈4× 1032 ergs s-1. The compact PWN is surrounded by a large-scale (≈4′ × 4′) emission, more extended southward of the pulsar, i.e., in the direction of the alleged pulsar motion. To explain the extended X-ray emission ahead of the moving pulsar, one has to invoke strong intrinsic anisotropy of the pulsar wind, or assume that this emission comes from a relic PWN swept by the reverse SNR shock. The extension of the large-scale X-ray emission toward the center of the unidentified TeV source HESS J1809-193 suggests an association between this source and J1809-1917.An alternative source of relativistic electrons powering HESS J1809-193 might be the serendipitously discovered X-ray source CXOU J180940.7-192544. In addition to the cosmic microwave background radiation or starlight background, the seed photons for Compton up-scattering to TeV energies might be supplied by bright infrared emission from molecular/dust clouds seen within HESS J1809-193.",
author = "O. Kargaltsev and Pavlov, {G. G.}",
year = "2007",
month = "11",
day = "20",
doi = "10.1086/521814",
language = "English (US)",
volume = "670",
pages = "655--667",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing Ltd.",
number = "1",

}

X-ray emission from PSR J1809-1917 and its pulsar wind nebula, possibly associated with the TeV Gamma-ray source HESS J1809-193. / Kargaltsev, O.; Pavlov, G. G.

In: Astrophysical Journal, Vol. 670, No. 1, 20.11.2007, p. 655-667.

Research output: Contribution to journalArticle

TY - JOUR

T1 - X-ray emission from PSR J1809-1917 and its pulsar wind nebula, possibly associated with the TeV Gamma-ray source HESS J1809-193

AU - Kargaltsev, O.

AU - Pavlov, G. G.

PY - 2007/11/20

Y1 - 2007/11/20

N2 - We detected the 50 kyr old pulsar J1809-1917, and resolved its pulsar wind nebula (PWN) with the Chandra X-Ray Observatory. The pulsar spectrum fits a power-law+blackbody (PL+BB) model, with a photon index Γpsr = 1.2 ±0.6 and T ≈2 MK for nH = 0.7 × 1022 cm-2. At a distance of 3.5 kpc, the luminosities of the PL and BB components are (4 ±1) × 1031 ergs s-1 (in 0.5-8 keV) and ∼1 × 1032 ergs s-1 (bolometric), respectively. The bright inner PWN component of a 3″ × 12″ size is elongated in the north-south direction (with the pulsar close to its south end) and immersed in a larger (20″ × 40″), similarly elongated outer PWN component. The PWN shape can be explained by the ram pressure confinement of the pulsar wind due to the supersonic motion of the pulsar. The PWN spectrum fits an absorbed PL model with nH ≈ 0.7 × 1022 cm-2, Γpwn = 1.4 ±0.1, and a 0.5-8 keV luminosity of ≈4× 1032 ergs s-1. The compact PWN is surrounded by a large-scale (≈4′ × 4′) emission, more extended southward of the pulsar, i.e., in the direction of the alleged pulsar motion. To explain the extended X-ray emission ahead of the moving pulsar, one has to invoke strong intrinsic anisotropy of the pulsar wind, or assume that this emission comes from a relic PWN swept by the reverse SNR shock. The extension of the large-scale X-ray emission toward the center of the unidentified TeV source HESS J1809-193 suggests an association between this source and J1809-1917.An alternative source of relativistic electrons powering HESS J1809-193 might be the serendipitously discovered X-ray source CXOU J180940.7-192544. In addition to the cosmic microwave background radiation or starlight background, the seed photons for Compton up-scattering to TeV energies might be supplied by bright infrared emission from molecular/dust clouds seen within HESS J1809-193.

AB - We detected the 50 kyr old pulsar J1809-1917, and resolved its pulsar wind nebula (PWN) with the Chandra X-Ray Observatory. The pulsar spectrum fits a power-law+blackbody (PL+BB) model, with a photon index Γpsr = 1.2 ±0.6 and T ≈2 MK for nH = 0.7 × 1022 cm-2. At a distance of 3.5 kpc, the luminosities of the PL and BB components are (4 ±1) × 1031 ergs s-1 (in 0.5-8 keV) and ∼1 × 1032 ergs s-1 (bolometric), respectively. The bright inner PWN component of a 3″ × 12″ size is elongated in the north-south direction (with the pulsar close to its south end) and immersed in a larger (20″ × 40″), similarly elongated outer PWN component. The PWN shape can be explained by the ram pressure confinement of the pulsar wind due to the supersonic motion of the pulsar. The PWN spectrum fits an absorbed PL model with nH ≈ 0.7 × 1022 cm-2, Γpwn = 1.4 ±0.1, and a 0.5-8 keV luminosity of ≈4× 1032 ergs s-1. The compact PWN is surrounded by a large-scale (≈4′ × 4′) emission, more extended southward of the pulsar, i.e., in the direction of the alleged pulsar motion. To explain the extended X-ray emission ahead of the moving pulsar, one has to invoke strong intrinsic anisotropy of the pulsar wind, or assume that this emission comes from a relic PWN swept by the reverse SNR shock. The extension of the large-scale X-ray emission toward the center of the unidentified TeV source HESS J1809-193 suggests an association between this source and J1809-1917.An alternative source of relativistic electrons powering HESS J1809-193 might be the serendipitously discovered X-ray source CXOU J180940.7-192544. In addition to the cosmic microwave background radiation or starlight background, the seed photons for Compton up-scattering to TeV energies might be supplied by bright infrared emission from molecular/dust clouds seen within HESS J1809-193.

UR - http://www.scopus.com/inward/record.url?scp=39049144691&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=39049144691&partnerID=8YFLogxK

U2 - 10.1086/521814

DO - 10.1086/521814

M3 - Article

AN - SCOPUS:39049144691

VL - 670

SP - 655

EP - 667

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 1

ER -